"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sb.scatterplot(X12_test.flatten(), y_test)\n",
"sb.scatterplot(X12_test.flatten(), m10_test_predicted)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Let us summarize the models' errors"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"M1 train 39.0\n",
"M1 test 38.0\n",
"M2 train 29.0\n",
"M2 test 33.0\n",
"M10 train 26.0\n",
"M10 test 29.0\n"
]
}
],
"source": [
"print(\"M1 train\", round(mean_squared_error(y_train, m1_train_predicted)))\n",
"print(\"M1 test\", round(mean_squared_error(y_test, m1_test_predicted)))\n",
" \n",
"print(\"M2 train\", round(mean_squared_error(y_train, m2_train_predicted)))\n",
"print(\"M2 test\", round(mean_squared_error(y_test, m2_test_predicted)))\n",
"\n",
"print(\"M10 train\", round(mean_squared_error(y_train, m10_train_predicted)))\n",
"print(\"M10 test\", round(mean_squared_error(y_test, m10_test_predicted)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will talk about model selection and feature selection in mode detail in one of the next classes."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Is there only one way to split the dataset? Cross-validation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cross-validation is reusing the dataset and creates multiple train-holdout subset pairs.\n",
"\n",
"The major assumption is that our whole dataset is a representative sample. By taking the random subsamples from the whole dataset we can estimate the performance of the model on previously unseen data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### LeaveOneOut\n",
"\n",
"LeaveOneOut (or LOO) is a simple cross-validation. Each learning set is created by taking all the samples except one, the test set being the sample left out. Thus, for n samples, we have n different training sets and n different tests set. This cross-validation procedure does not waste much data as only one sample is removed from the training set"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### KFold\n",
"KFold divides all the samples in k groups of samples, called folds (if k = n, this is equivalent to the Leave One Out strategy), of equal sizes (if possible). The prediction function is learned using \n",
"k−1folds, and the fold left out is used for test.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ShuffleSplit\n",
"\n",
"The ShuffleSplit iterator will generate a user defined number of independent train / test dataset splits. Samples are first shuffled and then split into a pair of train and test sets.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### TimeSeriesSplit\n",
"\n",
"TimeSeriesSplit is a variation of k-fold which returns first \n",
"k folds as train set and the (k+1)th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Also, it adds all surplus data to the first training partition, which is always used to train the model.\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.716098217736928"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"KNeighborsRegressor().fit(X, y).score(X, y)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.7079649368669324"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADwFJREFUeJzt3W+MHPV9x/HPJyFRI44apw4r11A2lQiKhVuQV1GkPMheUVqKJQhNU2G1CBSSi6pC8sCt5KYPioqQrCoJT5ontCBQpHCiUVqIQaXUZYNSkajnYDCORUjpNbWxIBCwOJT+cfTtgxviq7nzzO3s7N5+5/2STrczO/ub7/fW+/Hc7OzvHBECAEy/d0y6AADAaBDoAJAEgQ4ASRDoAJAEgQ4ASRDoAJAEgQ4ASRDoAJAEgQ4ASZwzzp1t2bIlut1u7XHefPNNnXvuufULmjJt7Vtqb+9t7Vtqb++r9X3w4MFXIuJ9ZY8da6B3u10tLCzUHmcwGKjf79cvaMq0tW+pvb23tW+pvb2v1rft/6jyWE65AEASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASY/2kKICNo7v34Ynte3HfrontOzOO0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgidJAt32R7cdtH7V9xPbni/W32T5u+1DxdXXz5QIA1lLlT9CdkrQnIr5n+zxJB20/Vtx3Z0R8sbnyAABVlQZ6RJyQdKK4/Ybto5K2NV0YAGB91nUO3XZX0hWSvlususX2M7bvsb15xLUBANbBEVFtQ3tG0rck3RER37DdkfSKpJB0u6StEfGpVR43J2lOkjqdzs75+fnaRS8tLWlmZqb2ONOmrX1L7e29yb4PHz/ZyLhV7Ni2qXQbnvPTZmdnD0ZEr+yxlQLd9rsk7Zf0aER8eZX7u5L2R8RlZxun1+vFwsJC6f7KDAYD9fv92uNMm7b2LbW39yb77u59uJFxq1jct6t0G57z02xXCvQqV7lY0t2Sjq4Mc9tbV2x2naRnqxYMABi9Kle5fETSDZIO2z5UrPuCpN22L9fyKZdFSZ9tpEIAQCVVrnL5tiSvctcjoy8HADAsPikKAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQRGmg277I9uO2j9o+Yvvzxfr32n7M9vPF983NlwsAWEuVI/RTkvZExAclfVjSH9neLmmvpAMRcYmkA8UyAGBCSgM9Ik5ExPeK229IOippm6RrJd1XbHafpI83VSQAoNy6zqHb7kq6QtJ3JXUi4oS0HPqSLhh1cQCA6hwR1Ta0ZyR9S9IdEfEN269HxPkr7n8tIt52Ht32nKQ5Sep0Ojvn5+drF720tKSZmZna40ybtvYttbf3Jvs+fPxkI+NWsWPbptJteM5Pm52dPRgRvbLHVgp02++StF/SoxHx5WLdc5L6EXHC9lZJg4i49Gzj9Hq9WFhYKN1fmcFgoH6/X3ucadPWvqX29t5k3929DzcybhWL+3aVbsNzfprtSoFe5SoXS7pb0tG3wrzwkKQbi9s3SnqwasEAgNE7p8I2H5F0g6TDtg8V674gaZ+kB2zfLOlHkj7ZTIkAgCpKAz0ivi3Ja9x95WjLAQAMi0+KAkASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJFEa6Lbvsf2y7WdXrLvN9nHbh4qvq5stEwBQpsoR+r2Srlpl/Z0RcXnx9choywIArFdpoEfEE5J+MoZaAAA11DmHfovtZ4pTMptHVhEAYCiOiPKN7K6k/RFxWbHckfSKpJB0u6StEfGpNR47J2lOkjqdzs75+fnaRS8tLWlmZqb2ONOmrX1L7e29yb4PHz/ZyLhV7Ni2qXQbnvPTZmdnD0ZEr+yxQwV61fvO1Ov1YmFhoXR/ZQaDgfr9fu1xpk1b+5ba23uTfXf3PtzIuFUs7ttVug3P+Wm2KwX6UKdcbG9dsXidpGfX2hYAMB7nlG1g+35JfUlbbB+T9OeS+rYv1/Ipl0VJn22wRgBABaWBHhG7V1l9dwO1AABq4JOiAJAEgQ4ASZSecgHQrLNdbbJnxyndNMGrUTBdOEIHgCQIdABIgkAHgCQIdABIgkAHgCQIdABIgkAHgCS4Dh3QZGcebKMqP+8mrsGvMsvjNOMIHQCSINABIAkCHQCSINABIAkCHQCSINABIAkuW8SGstblbEwjC5TjCB0AkiDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASCJ0kC3fY/tl20/u2Lde20/Zvv54vvmZssEAJSpcoR+r6Srzli3V9KBiLhE0oFiGQAwQaWBHhFPSPrJGauvlXRfcfs+SR8fcV0AgHUa9hx6JyJOSFLx/YLRlQQAGIYjonwjuytpf0RcViy/HhHnr7j/tYhY9Ty67TlJc5LU6XR2zs/P1y56aWlJMzMztceZNm3o+/Dxk6uu77xHeumnYy5mA2hr31Izve/Ytmm0AzZgtdf57OzswYjolT122PnQX7K9NSJO2N4q6eW1NoyIuyTdJUm9Xi/6/f6QuzxtMBhoFONMmzb0vdac53t2nNKXDrdv+v629i010/vi7/dHOl4T6rzOhz3l8pCkG4vbN0p6cMhxAAAjUuWyxfslPSnpUtvHbN8saZ+kj9l+XtLHimUAwASV/j4TEbvXuOvKEdcCAKiBT4oCQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAk0c5p3AC0UneN2TzHYXHfrsb3wRE6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRR6y8W2V6U9Iakn0k6FRG9URQFAFi/UfwJutmIeGUE4wAAauCUCwAkUTfQQ9I/2j5oe24UBQEAhuOIGP7B9i9HxIu2L5D0mKRbI+KJM7aZkzQnSZ1OZ+f8/HydeiVJS0tLmpmZqT3OtBlX34ePn2x8H+vVeY/00k8nXcX4tbVvKV/vO7ZtqrTdaq/z2dnZg1Xeo6wV6P9vIPs2SUsR8cW1tun1erGwsFB7X4PBQP1+v/Y402ZcfXf3Ptz4PtZrz45T+tLhUbzlM13a2reUr/fFfbsqbbfa69x2pUAf+pSL7XNtn/fWbUm/KenZYccDANRT57+/jqS/s/3WOF+LiH8YSVUAgHUbOtAj4gVJvz7CWgAANXDZIgAkQaADQBJ53kJO6MyrTfbsOKWbNuAVKAA2Bo7QASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0Akpia6XNXTiU77mlkq/5xVwCYJI7QASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkpiayxYnqTvGSyQBYFgcoQNAEgQ6ACRBoANAErUC3fZVtp+z/UPbe0dVFABg/YYOdNvvlPQVSb8tabuk3ba3j6owAMD61DlC/5CkH0bECxHxP5LmJV07mrIAAOtVJ9C3SfrPFcvHinUAgAlwRAz3QPuTkn4rIj5dLN8g6UMRcesZ281JmisWL5X03PDl/twWSa+MYJxp09a+pfb23ta+pfb2vlrfF0fE+8oeWOeDRcckXbRi+UJJL565UUTcJemuGvt5G9sLEdEb5ZjToK19S+3tva19S+3tvU7fdU65/KukS2y/3/a7JV0v6aEa4wEAahj6CD0iTtm+RdKjkt4p6Z6IODKyygAA61JrLpeIeETSIyOqZT1GegpnirS1b6m9vbe1b6m9vQ/d99BvigIANhY++g8ASWzoQK86tYDt37UdtlO8I17Wt+2bbP/Y9qHi69OTqLMJVZ5z279n+/u2j9j+2rhrbEKF5/zOFc/3D2y/Pok6m1Ch91+x/bjtp2w/Y/vqSdQ5ahX6vtj2gaLnge0LSweNiA35peU3Wv9N0q9KerekpyVtX2W78yQ9Iek7knqTrnscfUu6SdJfTbrWCfV+iaSnJG0uli+YdN3j6PuM7W/V8kUIE699TM/5XZL+sLi9XdLipOseU99/K+nG4vZvSPpq2bgb+Qi96tQCt0v6S0n/Nc7iGtTmKRWq9P4ZSV+JiNckKSJeHnONTVjvc75b0v1jqax5VXoPSb9Y3N6kVT7vMoWq9L1d0oHi9uOr3P82GznQS6cWsH2FpIsiYv84C2tY1SkVPlH8KvZ12xetcv80qtL7ByR9wPa/2P6O7avGVl1zKk+jYftiSe+X9M9jqGscqvR+m6Q/sH1My1fV3arpV6XvpyV9orh9naTzbP/S2QbdyIHuVdb9/JIc2++QdKekPWOraDzO2nfhm5K6EfFrkv5J0n2NVzUeVXo/R8unXfpaPlL9G9vnN1xX06r0/ZbrJX09In7WYD3jVKX33ZLujYgLJV0t6avF63+aVen7jyV91PZTkj4q6bikU2cbdCP/UMqmFjhP0mWSBrYXJX1Y0kMJ3hgtnVIhIl6NiP8uFv9a0s4x1da0KtNJHJP0YET8b0T8u5bnBrpkTPU1pdI0GoXrled0i1St95slPSBJEfGkpF/Q8nwn06zK6/zFiPidiLhC0p8V606ebdCNHOhnnVogIk5GxJaI6EZEV8tvil4TEQuTKXdkSqdUsL11xeI1ko6Osb4mVZlO4u8lzUqS7S1aPgXzwlirHL1K02jYvlTSZklPjrm+JlXp/UeSrpQk2x/UcqD/eKxVjl6V1/mWFb+J/Kmke8oG3bCBHhGnJL01tcBRSQ9ExBHbf2H7mslW15yKfX+uuGTvaUmf0/JVL1OvYu+PSnrV9ve1/EbRn0TEq5OpeDTW8W99t6T5KC57yKBi73skfab4936/pJum/WdQse++pOds/0BSR9IdZePySVEASGLDHqEDANaHQAeAJAh0AEiCQAeAJAh0AEiCQAeAJAh0AEiCQAeAJP4Pl98x+WeoV8oAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from sklearn.model_selection import ShuffleSplit\n",
"from sklearn.model_selection import cross_val_score\n",
"\n",
"reg = LinearRegression()\n",
"cv = ShuffleSplit(n_splits=100, test_size=0.1, random_state=0)\n",
"\n",
"# here we try to maximize the score, that is why neg_mean_squared_error\n",
"# essentially, score = - cost_function\n",
"s = cross_val_score(reg, X, y, cv=cv)\n",
"pd.Series(s).hist()\n",
"s.mean() # R^2"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"['accuracy',\n",
" 'adjusted_mutual_info_score',\n",
" 'adjusted_rand_score',\n",
" 'average_precision',\n",
" 'balanced_accuracy',\n",
" 'brier_score_loss',\n",
" 'completeness_score',\n",
" 'explained_variance',\n",
" 'f1',\n",
" 'f1_macro',\n",
" 'f1_micro',\n",
" 'f1_samples',\n",
" 'f1_weighted',\n",
" 'fowlkes_mallows_score',\n",
" 'homogeneity_score',\n",
" 'mutual_info_score',\n",
" 'neg_log_loss',\n",
" 'neg_mean_absolute_error',\n",
" 'neg_mean_squared_error',\n",
" 'neg_mean_squared_log_error',\n",
" 'neg_median_absolute_error',\n",
" 'normalized_mutual_info_score',\n",
" 'precision',\n",
" 'precision_macro',\n",
" 'precision_micro',\n",
" 'precision_samples',\n",
" 'precision_weighted',\n",
" 'r2',\n",
" 'recall',\n",
" 'recall_macro',\n",
" 'recall_micro',\n",
" 'recall_samples',\n",
" 'recall_weighted',\n",
" 'roc_auc',\n",
" 'v_measure_score']"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import sklearn.metrics\n",
"sorted(sklearn.metrics.SCORERS.keys())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Bias - Variance Tradeoff\n",
"\n",
"The **bias** is an error from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting).\n",
"\n",
"\n",
"The **variance** is an error from sensitivity to small fluctuations in the training set. High variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs (overfitting)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Let's plot some learning curves"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"#From http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.naive_bayes import GaussianNB\n",
"from sklearn.svm import SVC\n",
"from sklearn.datasets import load_digits\n",
"from sklearn.model_selection import learning_curve\n",
"from sklearn.model_selection import ShuffleSplit\n",
"\n",
"def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,\n",
" n_jobs=None, train_sizes=np.linspace(.3, 1.0, 10)):\n",
" plt.figure()\n",
" plt.title(title)\n",
" if ylim is not None:\n",
" plt.ylim(*ylim)\n",
" plt.xlabel(\"Training examples\")\n",
" plt.ylabel(\"Score\")\n",
" train_sizes, train_scores, test_scores = learning_curve(\n",
" estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, scoring=\"neg_mean_squared_error\")\n",
" train_scores_mean = np.mean(train_scores, axis=1)\n",
" train_scores_std = np.std(train_scores, axis=1)\n",
" test_scores_mean = np.mean(test_scores, axis=1)\n",
" test_scores_std = np.std(test_scores, axis=1)\n",
" plt.grid()\n",
"\n",
" plt.fill_between(train_sizes, train_scores_mean - train_scores_std,\n",
" train_scores_mean + train_scores_std, alpha=0.1,\n",
" color=\"r\")\n",
" plt.fill_between(train_sizes, test_scores_mean - test_scores_std,\n",
" test_scores_mean + test_scores_std, alpha=0.1, color=\"g\")\n",
" plt.plot(train_sizes, train_scores_mean, 'o-', color=\"r\",\n",
" label=\"Training score\")\n",
" plt.plot(train_sizes, test_scores_mean, 'o-', color=\"g\",\n",
" label=\"Cross-validation score\")\n",
"\n",
" plt.legend(loc=\"best\")\n",
" return plt"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VOXZ+P/PNTPJZA8Q9iXggopsFoKKjyi4UNxqtbZuldbHpVpt+3SxivbXTfFrW6ttrW3dWxFBraDWpe6x0FYFlH0RFGUXCJB91nP9/jgzYUImK5lMEq7363XIzH22+wzJueZej6gqxhhjTFt40p0BY4wxXZcFEWOMMW1mQcQYY0ybWRAxxhjTZhZEjDHGtJkFEWOMMW1mQcSYgyQir4jIN9KdD2PSwYKI6bJE5FMROSPd+VDVs1T1b6k4togUiMjvRGSTiFSJyIbY+96pOJ8xrWVBxJgmiIgvjefOBN4ERgLTgALgJKAMOL4Nx0vbtZjuy4KI6ZZE5FwRWSoi+0TkPyIyJmHdLSLysYhUishqEbkgYd03ReTfInKviOwBfh5LWygid4vIXhHZKCJnJexTKiJXJ+zf1LaHici/Yud+Q0TuF5EnGrmM6UAxcIGqrlZVR1V3qurtqvpy7HgqIkcmHP+vInJH7PVkEdkiIjeLyA7gMRFZIyLnJmzvE5HdIjIu9v7E2Oe1T0SWicjkAz6bT2J53ygil7ftf8d0JxZETLcTuyE+CnwLKAIeAF4QEX9sk4+BSUAh8AvgCREZkHCIE4BPgL7AzIS0dUBv4NfAIyIijWShqW2fBN6P5evnwBVNXMoZwD9Vtar5q25Uf6AXMBS4FpgDXJqw/ovAblX9QEQGAS8Bd8T2+RHwrIj0EZFc4A/AWaqaj1siWnoQ+TLdhAUR0x1dAzygqu+pajTWXhEETgRQ1WdUdVvsm/1TwHrqVw9tU9X7VDWiqrWxtM9U9SFVjQJ/AwYA/Ro5f9JtRaQYmAD8VFVDqroQeKGJ6ygCtrfpE9jPAX6mqsHYtTwJfElEcmLrL4ulAXwdeFlVX459Nq8Di4GzE441SkSyVXW7qq46yLyZbsCCiOmOhgI/jFXJ7BORfcAQYCCAiExPqOraB4zCLTXEbU5yzB3xF6paE3uZ18j5G9t2ILAnIa2xc8WV4Qagg7FLVQMJ+dkArAHOiwWSL7E/iAwFvnrA53YyMEBVq4GLgeuA7SLykogcc5B5M92ABRHTHW0GZqpqj4QlR1XniMhQ4CHgRqBIVXsAK4HEqqlUTW29HeiVUAoAN7g15g3gi7GqpMbUAInH63/A+mTXEq/SOh9YHQss4H5usw743HJV9S4AVX1VVc/EDWxrcT9Hc4izIGK6ugwRyUpYfLg3t+tE5ARx5YrIOSKSD+Ti3lh3AYjIlbglkZRT1c9wq4d+LiKZIjIROK+JXWbh3tifFZFjRMQjIkUicquIxKuYlgKXiYhXRKYBp7YgK3OBqcD17C+FADyBW0L5Yux4WbHG+cEi0k9EvhQLaEGgCoi25vpN92RBxHR1LwO1CcvPVXUxbrvIH4G9wAbgmwCquhr4LfBf4HNgNPDvDszv5cBE3KqqO4CncG/KDahqELdxfS3wOlCB2yjfG3gvttn3cAPRvtixn2suA6q6Hff6T4qdP56+Gbd0citukN0M3IR7n/AAPwS2AXtwg9W3W3rRpvsSeyiVMekjIk8Ba1X1Z+nOizFtYSURYzqQiEwQkSNiVVPTcL/5N1t6MKazshGsxnSs/sA83O67W4DrVfXD9GbJmLaz6ixjjDFtZtVZxhhj2qzbV2f17t1bhw0blu5stFp1dTW5uU0ND+ia7Lq6ju54TWDX1RJLlizZrap9WrJttw8iw4YNY/HixenORquVlpYyefLkdGej3dl1dR3d8ZrArqslROSzlm5r1VnGGGPazIKIMcaYNrMgYowxps26XBARkWkisk7cx4Teku78GGPMoaxLBRER8QL3A2cBxwKXisix6c2VMcYcurpUEMF9cNAGVf1EVUO4s5Gen+Y8GWPMIatLjVgXkYuAaaoaf571FcAJqnrjAdtdi/soUPr16zd+7ty5rTpP3zfe4PCHH8a/cyfBvn355Oqr2XnGGe1zES1UVVVFXl5jzzzquuy6uo7ueE1g19USU6ZMWaKqJS3aWFW7zAJ8FXg44f0VwH1N7TN+/HhtlSeeUM3JUYX9S06Om96B3n777Q49X0ex6+o6uuM1qdp1tQSwWFt4X+5q1VlbqP8kuMG4zzdoP7fdBjU19dNqauCGG+D++2HuXHjtNVi8GDZuhIoKcJx2zQK4pSGGDQOPx/05e3a7n6PFZs/uPHkxLvs/MZ1EVxuxvggYLiKHAVuBS4DL2vUMmzYlTy8vhxtvTL4uIwMKCqCwEHr2hB493KWoyH3fq1fDpagIevcGv7/h8WbP5ui774Zg7FlFn30G117rvr788oO/xtaYPds9dzywpisvs2e7AX7TJiguhpkz0/NZpDsP8Xx0hv8TY+hiQURVIyJyI/Aq4AUeVdVV7XqS4mL3j/JA/fvDk0+6JY/y8v1Lsvc7dsC6de7rioqmz5eV5QafHj3cgNOzJ7zzDt7gAQ+7q6mB73wHdu0CEXfxePa/TkxLTD9wm8beH/gzvnz/+8lLZj/4gfuZHHj+xvIVW/LXrYP8/EbXJz3Giy/CT34CgYB7/s8+g6uvdj/nc891Kx1hfwVk4uum1rVmn3/+E+66q35gv+oqWLUKpkyh14cfup9LNOqWTCMR92f8fTRa/3X8p2rybZv6+Ze/JP8/ue02CyKmw3WphvW2KCkp0VbNnXXgtzyAnBx48EG45BL3j1jV/Zn4On6TiN8QIpH9y9699YNMRQXs21c/+CSu/+ij9v8gTNcW/3Lg8UAo1Ph2V10FEybACSfAyJFuKbmNbI6prqWd585qccN6lyqJdIj4N7nGqi283rYdNzHgJAtCicFn/HjYurXhMfr3h+eeq/+N+cBjxn9Cw/XxLwzRaP31yY4Xz/MNN8Du3Q3zUlQE997b+Df5Rr7Vr9ixg9F9+9ZPPzB/B+b7ppsa/1x/8xu3tBKXWJpJfJ+4/sDtWrL/Ndc0noe5c/lg2zbGDRvmbuv1ukv8pu/zuT/j6fF1ia8Tt0l8H/+ZmK/jjoMtWxrmIzMTnn4aHnnEfe/3u4GkpMQNLBMmuO999mdv2o/9NiVz+eXtXy3gifVhaEkQ+tWviF51Vf0qrZwcuPtu9xvmwWhpyTO+XSgE3/pWw5LZ734HlzXRHNXIecoWLIBJk1qY2Zj77kveVlVc7Fa3NSYxODSlJdvdcUfyas6hQ+Hii6koLYWO+nZ7113JS8v33w8XXACrV8OiRbB0KaxY4ZauH3zQ3S4rC0aPdr+oxEssxxzT9i9H5pBnQaQzuvxy1q1Zw7FPPNH+jbitvbF+/evu6/ZsUG7tDevOO5PfNO+8s+NufjNnJs/DzJkdc/5EzZWWJ050l2jU/RIQCLjBZPFiWLYMVq6Ev/3NbVuJX8fo0fVLLMcc0/HXZbqmlvYF7qpLq8eJdBLWl/0ATzyhOnSoqoj7s4PH7TSXhy7z/xUKqVZXq+7cqfrGG6q/+pXq5Zerjh2rmpW1vxIyL0/3jhmj+p3vqP7tb6pr16pGo/WP1Rn+T9qgy/xftVLddbXD/wutGCdiJRHTNaSiirEr5uFgZWS4S04OnH46nHYahMNuiaWy0i2pfPABrFyJ54MP4IEH3OpEcHvVjR3rVoUFg/DXv9bvMZfObujtUFJWVRx1UGI3yNjPZGkRJ4KjTr3lhUdv5s7NT7I5L8qQKi+3DL6Ead+4vcXnFxqvJZAW1CCEoiF2PfR7Xv3LTfzkgjCbCqG4/DNm3nsll0PK/l8siBhzKBNxG+QzMyEvDwYMgKlTIRzmg3//m8lHHeW2rSxd6laDrVzptr1EIg2PVVPjdr1+6im37SU7223cz85238fTDnyd7GfikpXlHiferpho9mxm33sltx1w0/xKJEj4kq/W3eATb/phJ8ym8k1EnagbJHBwHIe6e7ij7msl/s/+17GfHkeRqIM4ikQjvPr0/+OHlX+nJt/dfFN+lB/tno33DxWcd9r1SDQKkSgSDkMkgkSiEI24aQk9OeOvJRyBaGxdOILEt41VUdYdL2H9iN0VvLrjdb41LUxNppuPz3rAtV8Mw8Pf43ILIsaYDuHx7L9pDx7sLmed5ZZWQiHYsweOOCJ554lAwG3Yj7fFBIP7Xx8EFXHzlJmJ+jNxYsvTeZ/xrXO0wU1Tf3cNF973e3xRt4efRKOI40DU4cRgBL+H2PtYemwbok5dz0mpG5/jIOoQcaIEPA4hjxLwQdCH+9MLP7+cugASV5MBP6n+BwOv/gcKaCxIad017X/flnWO14PjdXsAqsdDVDz86LT9AaQuH5lw23FlpKp8aEHEGNM8r3d/yaCwsPFBuYMHw4IF+7uwJy6BwP7AEgxCIEA0UIsTrMUJBHACtTi1NUQCtUSDtTiBajQQhHAICYbwBENIOIInGMITCuMJhrh19KdJb5rfm+qw65M9BLzq3uy9EPQ6BLxQpVEcvxD0KAGv7g8MHoegx3Hfi/szKA5BiRIQB0daP6ZuVy6c175zaiRwYkvzNhWmKg8WRIwxbdFYb7W77nKrxABHHaJOlKhGiTpRIk6EcDRMKBokFAkSjoRQdVDHwa0qUjwIgXCAPYE97KnZw57AHnbV7I4tu9hdW87Oml3sri1jV6CMmiS1agB7cuAHo/aPpfGIB78nE783E4/6yMvMJtObgd+TSaY3kyyvnxxvBj29fjI9mfh9fvyeDPxeP5neTPxef2ypn+bum8nNL32fXdkNb+j9ajw8dvnTIIIgiLhVcnLAOCR3ncSSYtvExgfVW+fx1NsG2b/u4xUfM+OD/2OHU94gH8UZRS34T20bCyLGmNa7/HJmV/ybWz95kM25UYZUe/lZ8SWc/aXTCZVvIhQNuQ3SqogI1aFq9tTuYU/tHspqy9yfNWVuYIgFiF3Vu9hVs4uacE3SU/bK7kWfnD70ye3DuKLD6Z3Tm6c/fIJyrW2w7QBPIa99a6F74/f58Xn23+pWLVrFyAkj2/XjCH+4hO/vfJyahAkCcsLwy0FfZ+xhE9v1XI0JZAe47Yt38ON//oBaDe/Ph2Qy80u/T9l5LYgYY1pt1rJZfGvPX6nNc2c/2JQX5bp9szjt+a30zulNWW0Zu2t2s7t6NztrdjYbGHrn9GbcgHH0zuntvs/tTd+cvvTJddcVZReR4W04hcuYfmMa3DSzJYNbv3gHvbJ7HdQ1akKbj6JNpk/7xu04f3X4f5vn1PXOmjHkEqZO/wWhaMNpajRZe1Liehpf39i+jjqcdeRZhM8Mc/d/72Z75XaGFA7hztPv5PLRqesxZ0HEGNNigUiAfbX7uOWNW6iN1C8BhJ0wr378Kj2zetI3ty+9c3pzXP/j6gJC71w3QMTXNRYYEsW71TrqEIqG6nW5ddRh6uFTCZ7x/7jnv/ewvWo7A/IG8IOJP2DqEVOpDFbW7zYbb5BWh6pgVYN094T7X3oSeoN5Ep6akdjd1iP708/+5kzO4c6Ew0qTXXMT923N+rqqrQO6BHvFS4G/gCvGXMH0sdMREXpm9WxR9+CDYUHEGNOk+E13T+0egtEgPo+P7VXbk24rCCu/vbJeWmIgiFdxxbvaBqPBejduRevf9BR8Hh9ejxef+PB6vfg8PnweHx7x4PV4uX7C9dxw/A11N+3Em2viseLp27zbOLLoyAbpB27f1fg8Pvrk9un483b4GY0xXYKi7K7ezd7AXhx1yPJlke93+7EOzB/I1sqGk4QOyBvglgBaGQg84sEjHgSpe+0RT8pu6s2VAkzLWRAxxtRRVWojteyp2UMoEmJfcB/ZGdkNbrrfPeG73PzGzfXSsn3ZzDx9JsN6DOuQQGA6BwsixhgiToTKYCV7a/cSdsJkejPxeDzkZOQk3T4YcWeY7pPTh901uykuLGbm6TNT2oBrOicLIsYcwuIN5eXBcgQhOyObrIysJvdRVWYtn8UX+n+BuRfNZWD+QPIy8zoox6azsSBizCHGUYfqUDVlNWV1DeV5mXktrnZ6d8u7rN+znnum3gNApjezmT1Md2ZBxJhDRCgaoiJQwb7APqIarddQ3hqPL3+cQn8h5x11HoqS4Wn7I3hN19fpuiiIyM9FZKuILI0tZyesmyEiG0RknYh8MZ35NKYrUFVqwjVsKd/CJ3s/YW9gL1kZbvBoboxGMruqd/HK+lf46siv4vV4ycnIsYbzQ1xnLYncq6p3JyaIyLHAJcBIYCDwhogcparRdGTQmM4s6kSpClVRVlNGyAmR6c2kwF9w0Medu2ouYSfMFWOuIOyED3pUuOn6OmsQSeZ8YK6qBoGNIrIBOB74b3qzZUznEYgEqAhWsK92HwBZGVnNNpS3VNSJ8sTyJzhpyEkc2etIqoJV1h5iOm0QuVFEpgOLgR+q6l5gEPBuwjZbYmkNiMi1wLUA/fr1o7S0NLW5TYGqqqoume/m2HWlRvzBS6ruA5XaYzBdoDrAqkWr6t6/v+d9tlRs4RsDv8GqRatwHIdtvm0HfZ6Olu7/q1RJ13WlJYiIyBtA/ySrbgP+DNyOOxnC7cBvgf8FklW8Jp2JTFUfBB4EKCkp0cmTJx98pjtYaWkpXTHfzekO1xWfAC9xkrx/vfMvJp0yaf82zUzYl2xdU/s1ti4YDbKnZg9RjeL3+du1ZHDgbLe/fu7X9Mnpw9VfvBqPeHAch2E9h7Xb+TpKd/gdTCZd15WWIKKqZ7RkOxF5CHgx9nYLMCRh9WAgZV+DIk6EzeWbyfJlkZeZh9/nJ8OTYY2IXdiBk/clzukUX+eoU/f8i8THqsa/5Uc1uv9mnnCPD0aCfLz344STJb5sOB9Ue62Lj+1I9TQeWyq28OYnb3Lj8TeS6c2kNlzbLm0spuvrdNVZIjJAVeOzu10AxGdzewF4UkTuwW1YHw68n6p8qKo7ayhKZbCyroogLyOPPH8efq+/Tb1bTOsdOIFfsgCQ+AztxBt/PCjUe4a27r8Jq6o7AV/8GUEJk/iJSN18Tj6Pr176gTweT7cecDd7xWwAvj7m6wBENdroaHZzaOl0QQT4tYgch/u961PgWwCqukpEngZWAxHghlT3zBIRsnxZdZ+Sow41kRoqQhWouv3j8/x55GbkNnjwjWlc/Fv+gUvEidQt8SfhxdPrSQgG8ffxifuAuvmaPOLBJz4yJMMm3DsI4WiYOSvmcNphpzG4YHBdun2JMtAJg4iqXtHEupnAzA7MTj0e8bhBJSbqROvmGwL3jyo/M5/czFwyvZndPqgkCwSJj0RNDAYRJ0JUowSjB1T7JIgHgngA8HjcIJAl7dO7yLTNPz/+J7tqdjF97HTALRl6xGODDA3QCYNIV+L1eMn2ZNe9jzpRKoIV7Kndg4iQ4cmgwF9AdkY2fq8fr8ebxty2XLx6KPHZ2MFokHA0XC8w1NsnocI+sRooPpOrz+MjUzLdKsFuXO3THc1aNovBBYOZMmwK4I58t0GGJs6CSDs6MKhEnAh7A3spqy0DBb/PT74/n2xfNn6fP21VLImlhagTJRx1Hw4UiobcQKGRem0F8WAQf+5Dpi/TSgeHiA17NvDvzf/m5v+5ue5LUNgJ0yvDBhkalwWRFIo/eCcuHA2zp3YPUSeKIO70E5n5ZGdku1Nvt1NQaWuQ8Hl8FiBMPbOWz8Ln8XHpqEvr0lQVv8+fxlyZzsSCSAfK8GbUa4wMR8PsrtmNow4iQo4vh3x/fr12l2QObHcIR8OEoqG6JeJE3KoGpS5IeD1evOK1IGFaLBgN8syqZzjryLPqPXZVEBupbupYEEmjxKCiqoSdMDurd+KoQzAaZGvFVvIy83DUIRQN1ZUm6rqrJgkSfp+fbMlu8rzGtMQ7u9+hPFhe16AObhVte5aaTddnQaSTEHG/3cW/4XnEQyga4vPqz+sap73iJcuXZX/ApkO8uP1Fjux1JBMHT6xLC0fDFPoL05gr09nY3agT8/v85GXmkZORQ5YviwyvjXcwHWPlzpWsrVzLFWOuqNcLK+JEyM6wkq7Zz+5IxpgGHl/2OH6Pn4uOvajBOmsPMYksiBhj6qkMVjJ/7Xwm95lMj6wedemOOng93m4/iNa0jgURY0w9z655lppwDecMOKdeejgatkGGpgELIsaYOqrKrGWzGN13NEfnHV1vXcSJkJuRm6acmc7Kgogxps7ibYtZW7aW6WOnNyhxOOrYIEPTgAURY0ydx5c9Tn5mPl8+5ssN1tkgQ5OMBRFjDABlNWW8uP5FLjr2ogbPCrFBhqYx9hthjAHg6VVPE4qGuGJMw6cxhKNhm33ZJGVBxBiDow5PLH+CEwadwNG9j26wPupEbZChScqCiDGGBZ8t4NPyT5OWQsB9Xoy1h5hkLIgYY3h82eP0yu7F2cPPbrAuPsjQHodrkklLEBGRr4rIKhFxRKTkgHUzRGSDiKwTkS8mpE+LpW0QkVs6PtfGdE/bKrfx+ievc8nIS5J24Q1HwzY+xDQqXSWRlcCFwL8SE0XkWOASYCQwDfiTiHhFxAvcD5wFHAtcGtvWGHOQ5qyYQ1SjfH3M15OujziRBr21jIlLyyQ4qroGSDZ9wvnAXFUNAhtFZANwfGzdBlX9JLbf3Ni2qzsmx8Z0TxEnwpMrnmTy0MkM7TE06TaKPcnQNK6zzaQ2CHg34f2WWBrA5gPST2jsICJyLXAtQL9+/SgtLW11RhQlFA2lrV98oDrAqkWr0nLuVLLr6lwW7l7IjuodXDf0ugb5j1+T4zhs821LUw7bX1VVVZvuCZ1duq4rZUFERN4A+idZdZuqPt/YbknSlOTVbtrYuVX1QeBBgJKSEp08eXLTmU0iHA2zcd/GtPWNX7VoFSMnjEzLuVPJrqtzuePZOxiQN4Arp17ZYHbeVYtWcdS4owAaLaV0RaWlpbTlntDZpeu6UhZEVPWMNuy2BRiS8H4wEP8K1Fi6MaYNNu7dyL8++xc/mvijRqd3jziRetPBG3OgztbF9wXgEhHxi8hhwHDgfWARMFxEDhORTNzG9xfSmE9jurwnlj+BV7xcOvrSRreJOlGyfFkdmCvT1aSlTURELgDuA/oAL4nIUlX9oqquEpGncRvMI8ANqhqN7XMj8CrgBR5V1a5XAW1MJxGIBHhq1VN88Ygv0j8vWa3zfjbI0DQlXb2z5gPzG1k3E5iZJP1l4OUUZ82YQ8JLH73E3sBerhibfIR6nMfjsUGGpkmdrTrLGNMBZi2fxbAewzi5+ORGt1FVG2RommVBxJhDzJpda1i0bRFXjLmiyS7sigUR0zwLIsYcYmYtn4Xf6+drI7/W7LaZPmsPMU2zIGLMIaQ6VM2za57l3KPOpVd2r2a3t0Z10xwLIsYcQuatnUdVqIrpY6c3uV04GkYQe5KhaZb9hhhziFBVHl/2OCN6j2D8gPFNbht2wnjF20E5M12ZBRFjDhEfbP+A1btWM33s9GSTn9YTdaLNbmMMWBAx5pAxa/kscjNyuXDEhc1ua1VZpqXst8SYQ8De2r38Y90/uHDEhc1OKuqo0+hcWsYcyIKIMYeAZ1Y/QyAaaHaEOkAoGiI7I7sDcmW6AwsixnRzqsqs5bMYP2A8I/s0P119JBqxQYamxSyIGNPN/Xvzv/lk7yctKoWAPcnQtI4FEWO6uceXPU6PrB6cO/zcFm0vIjbpomkxCyLGdGOfV33Oqx+/ytdGfq1F7RzhaJgsX5b1zDItZr8pxnRjc1bOIeJEuGJMy6qywk44bY+ENl2TBRFjuqmoE2X2itlMKp7E4T0Pb/E+9iRD0xoWRIzppt7c+CbbKre1uBQSZ5MumtawIGJMNzVr2Sz65fZj6hFTW7S9ow4ZngwbaGhaxYKIMd3QpvJNvP3p21w66tIW97QKRUPkZOSkOGemu0lLEBGRr4rIKhFxRKQkIX2YiNSKyNLY8peEdeNFZIWIbBCRP4jNDmdMo2Yvn42IcNmYy1q8TyQaITfTBhma1klXSWQlcCHwryTrPlbV42LLdQnpfwauBYbHlmmpz6YxXU8oGmLOyjmccfgZDMof1OL9FLX2ENNqaQkiqrpGVde1dHsRGQAUqOp/VVWBx4EvpyyDxnRhr6x/hbLaMqaPafrBU4lUFRGxIGJarTO2oB0mIh8CFcBPVHUBMAjYkrDNllhaUiJyLW6phX79+lFaWtrqTChKKBpK26CrQHWAVYtWpeXcqWTXlXp/Wf4X+mf1p/eu3qza3bI8ud/NYJt3W11aVVVVm/52Oju7rvaVsiAiIm8A/ZOsuk1Vn29kt+1AsaqWich44DkRGQkka//Qxs6tqg8CDwKUlJTo5MmTW5V3cEfubty3MW0Dr1YtWsXICc1PltfV2HWl1kdlH7F8wXJuPflWRh8/usX71YRr6JXdq95z10tLS2nL305nZ9fVvlIWRFT1jDbsEwSCsddLRORj4CjcksfghE0HA9saHsGYQ9usZbPI8GRwyahLWrWfDTI0bdWpuviKSB8R98HOInI4bgP6J6q6HagUkRNjvbKmA42VZoxJiXlr5nH8Q8cz+J7BHP/Q8cxbMy/dWaqnJlzD39f8nXOGn0NRTlGr97f2ENMW6erie4GIbAEmAi+JyKuxVacAy0VkGfB34DpV3RNbdz3wMLAB+Bh4pYOzbQ5h89bM48ev/5itlVtRlK2VW/nx6z/uVIHk+bXPUxGsYPrYljeog1sKsUGGpq3S8lujqvOB+UnSnwWebWSfxcCoFGfNmKTuWngXtZHaemm1kVruWnhXi55Z3hFmLZ/F0UVHc/yg41u1X9gJ2/gQ02adqjrLmM5oZ/VOtlZuTbpua+VW1u5eW9e7KV2W7VjGss+XccWYK2jtONxINGIj1U2btbgkIiInA8NV9TER6QPkqerG1GXNmPSpDFbyyoZXmL92Pgs3LWxy29MfP50+/j5MLZ/KlGFTmDR0Uof36pu1fBbZvmy+cuxX2rS/tYeYtmpREBGRnwElwNHAY0AG8ATwP6nLmjEdKxQNUfppKfPWzOP1j18nEA1QXFjMd47/DnmZedzz33vqVWll+7KZMWkG2b5snv+4S/zzAAAgAElEQVTgeZ5f9zyzV8zG5/Fx/KDjOW3YaUw5bApHFx3d6tJBa5QHypm/dj4XHnMhBf6CVu2rqiAWREzbtbQkcgHwBeADAFXdJiL5KcuVMR3EUYf3t77PvDXzeOmjl9gX3Eev7F5cMuoSLhhxAeMHjK8LAP3z+nPXwrvYVrmNgfkDueXkW+raQ8YGxjJ83HAWb1vM2xvf5u1P3+aOBXdwx4I7GJA3gNMOO40pw6ZwcvHJ5Pvb90/n2TXPEogEWvwM9URhJ0y2LzulQc50by0NIiFVVRFRABGxVrhDyLw18xq9eXZVa3atYf7a+Ty39jm2Vm4l25fNtCOnccExF3DK0FOSznx74YgLm7zuTG8mJw05iZOGnMRtp9zGtsptlH5aytsb365XSpkwcEJdUDmm9zEHdQNXVR5f9jjH9TuOMf3GtHr/iBOhMLuwzec3pqVB5GkReQDoISLXAP8LPJS6bJnOIt61NV6NE+/aCnS5QLK1YivPrX2O+Wvns2b3Grzi5dRhpzLj5BlMPWJqu/dQGpg/kMtGX8Zloy8jHA27pZRP3+atjW8xc8FMZi6YyYC8AUwZNoUph01hUvGkVpdS3t3yLuv3rOe3U3/bpjw66uD3+du0rzHQwiCiqneLyJm481kdDfxUVV9Pac5Mp3D7O7cn7dr607d/yrAewxjea3i7V8+0p721e3lp/UvMXzOfd7e+C8D4AeOZedpMzjvqvDYNymuLDG8GE4dMZOKQidw66dZ6pZR/fPQPnlz5ZF0pZcqwKZx22GktKqXMWj6LQn8h5x99fpvzZu0h5mA0G0RiI8hfjU1jYoHjEBBxIvxzwz95+IOH2VmzM+k2ewN7OW/OeQAMyBvA0UVHM7xoOEcVHeX+7HUUhVnpqSapDdfyxsY3mL9mPm9tfIuwE+bIXkdy00k3ccExFzC0x9C05CtRU6WUOxfeyZ0L76R/Xn+3lBLr8ZXYaD5vzTzuXHAn26u2k5uRyysbXml1yTDqRPGJzwYZmoPS7G+PqkZFpEZEClW1vCMyZdJjX2Afc1bM4bGlj7G1citDC4dS6C+kPNjwv71fbj/uOuMuPir7qG55d/m7BCKBum365/avCyzxJRqOpiTvUSfKvzf/m/lr5/Py+pepClXRL7cfV37hSi485kJG9R3VaRuPDyylbK/cTumnpbz16Vu8+NGLzFk5p14pxVGH37/3+7oSYnW4uk1VjKFoKG0TjJruo6VfQQLAChF5HaiOJ6rqd1OSK9OhNuzZwKMfPsrTq56mNlLLxMETuX3K7Zxx+Bk8v+75em0i4HZt/ckpP2HqEVPrPb/bUYctFVtYV7aO9WXr+ajsI9aXrWfOyjnUhGvqtuu7oi/De9UPLkcVHVVvBtkDJWvcv+CYC1j++XLmrZ3HC+teYGf1TvIz8zln+DlcMOICThp8El6PNzUfWgoNyB/ApaMv5dLRlxKOhlmyfQlvb3ybtz51SynJtGX0fNSJ2kh1c9BaGkReii2mm1BV/vXZv3j4g4d569O3yPRmcsExF3DVuKsY2Wf/lObxm1JLemd5xENxYTHFhcWcefiZdemOOmyr3MZHZR+xYOkCynPK+ajsI55Z/QxVoaq67YqyixoElqOKjuJfn/6LH79Rv3H/+69+n9vfuZ2dNTvJ9GZy2rDTuGDEBZxx+BndajbaDG8GJw4+kRMHn8iMSTPYUbWD8Q+OT7rttsrWT2yd4WnZ89eNaUxLG9b/JiKZuNOyA6xT1XDqsmVSpTZcy9/X/J1HPniE9XvW0yenDz+a+CO+Pubr9Mntk3Sf5rq2NscjHgYXDGZwwWD67e5X99wNVWVb1bZ6pZZ1ZeuYv3Y+FcGK/fvjwcGpd8yIE2FfcB+/OfM3nD38bHpk9Whz/rqS/nn9GZQ/KOk0LAPzB7b4OPYkQ9NeWjpifTLwN+BT3AdEDRGRb6hqsmekm05oa+VW/rb0b8xePpt9wX2M7jua30/7PecddV7auniKCIPyBzEofxCTh02uS1dVPq/+vK6t5WelP0u6fzga5rLRl3VQbjuPW06+JWkV4y0n39LiY4SdMFm+rE7bTmS6jpZWZ/0WmBp/LrqIHAXMAZKXq02noKos2b6Ehz94mJfXv4yiTDtyGteMu4YJAyd02huIiNA/rz/98/pzytBTeHDJgwf9zbs7aU0VY2PC0TCFOTbI0By8lgaRjHgAAVDVj0TEKlM7qVA0xEsfvcQjHz7Chzs+pMBfwDXjruGbx32TIYVD0p29VmuPb97dzcFWMSrardqOTPq0NIgsFpFHgFmx95cDS1KTJdNWe2r38MTyJ/jb0r+xo3oHh/c8nJmnzeSrx361S/fCaY9v3qahZFO7GNNaLQ0i1wM3AN/FbRP5F/CnVGXKtM7a3Wt55INHmLdmHoFogFOHnsqvz/w1Uw6bgke6xyNjDvabt9kv6kTxeWyQoWkfLf0t8gG/V9V7oG4Uu024k0aOOry58U0e+eARFmxaQJYvi68c+xWu+sJVHN376HRnz3RioWioU09VY7qWlgaRN4EzgHin/mzgNeCktpxURH4DnAeEcJ+XfqWq7outmwFcBUSB76rqq7H0acDvAS/wsKre1ZZzd3VVoSqeWfUMj3z4CBv3baR/Xn9mnDyDy0Zf1uRgPWPiIo49ydC0n5YGkSxVrRsVpqpVInIwv4WvAzNUNSIivwJmADeLyLHAJcBIYCDwRqwnGMD9wJnAFmCRiLygqqsPIg+d2ps73+TKh66sawO4Ztw1bKvaxpwVc6gMVTJuwDhu+p+bOPvIs61u27SKYONDTPtpaRCpFpFxqvoBgIiUALXN7NMoVX0t4e27wEWx1+cDc1U1CGwUkQ3A8bF1G1T1k9j558a27ZZBZN6aefxu/e8IOkHAHePx83d+jiCcf/T5XDXuKsYNGJfmXJquKD7I0Eaqm/bS0iDyf8AzIrINUNxSwsXtlIf/BZ6KvR6EG1TitsTSADYfkH5CYwcUkWuBawH69etHaWlpqzOlKKFoKOUN09WRanYEdvB58HM+D3zOjsAOXtrxEiEn1GDboswivt3327AFVm1ZldJ8pUqgOsCqRV0z703pKtelqgjCVm/DcTcHqqqqatPfTmdn19W+mgwiIjIB2Kyqi0TkGOBbwIXAP4GNzez7BtA/yarbVPX52Da3ARFgdny3JNsrkOxOro2dW1UfBB4EKCkp0cmTJzeV1aTC0TAb92086FlOq0JVbC7fzOaKzWyp2MKm8k1sqdjivi/fwr7gvnrb52TkJA0gAGWhsropQ7qqVYtWdflrSKarXFd1qJreOb3pmd2z2W1LS0tpy99OZ2fX1b6aK4k8gNugDjARuBX4DnAc7k36okb2I/b8kUaJyDeAc4HTVTUeELYAiaPhBgPxWeUaS293s1fM5tY3b2Vz+eZmxyTUhGvqB4fyzWyq2P96b2Bvve2zfFkMKRjCkIIhjB8wniEFQxhcOJjigmKGFA6hZ1ZPTnj4BBuhbVLCUccGGZp21VwQ8arqntjri4EHVfVZ4FkRWdrWk8Z6Wt0MnKqqNQmrXgCeFJF7cKvMhgPv45ZQhovIYcBW3Mb3lEyaNHvFbK79x7V1U5dvrdzKj177Eat3rWZI4RC2lLuliHjpoqy2rN7+fq+fwQWDGVIwhLH9xtYFiSEFQyguLKYou6jZ6UZuOfkWfvTqj+raRMBGaJv2Y43qpj01G0RExKeqEeB0Yu0MLdy3KX/EHWfyeuyG+q6qXqeqq0TkadwG8whwg6pGAUTkRuBV3C6+j6pqSiqgb3vztnrPvgAIRoP8efGfAfcPcFD+IIYUDmFa32kMKXRLFYMLBlNcWEzvnN4H3Y5y4YgL2fLJFp7Y9oSN0DbtJupEyfBmdMlnrJjOq7lAMAd4R0R24/bGWgAgIkcCbX7Koaoe2cS6mcDMJOkvAy+39Zwttal8U9J0QVh0zSL65fXrkFHgp/c9ne+eY8/8Mu3HBhmaVGgyiKjqTBF5ExgAvJbQduHBbRvpdooLi/ms/LMG6QPzBzIgf0AacmRM+4hq1AYZmnbX7FdqVX1XVeerauJjcT+KjxnpbmaePrPBH5q1R5juQFWtPcS0u+4xO187unz05Tx43oMUFxYjuA9N+vWZv7b2CNOlqSoe8dggQ9PubBrPJC4ffTlfO/Zr7TJOxJjOIOyEycnI6bQPIjNdl5VEjDkEhKNhcjO67jNlTOdlQcSYQ4CjDn6fPb3BtD8LIsYcIqxR3aSCBRFjurmIEyHTm2mDDE1KWBAxppsLR8PkZlp7iEkNCyLGdHM2yNCkkgURYw4B1h5iUsWCiDHdWPwhVDbI0KSKBRFjurFQNGSDDE1KWRAxphuLOBGbdcGklAURY7oxm3TRpJoFEWO6OQsiJpUsiBjTTUWciD3J0KScBRFjuqlwNGztISbl0hJEROQ3IrJWRJaLyHwR6RFLHyYitSKyNLb8JWGf8SKyQkQ2iMgfxLqbGNMkG2RoOkK6SiKvA6NUdQzwETAjYd3HqnpcbLkuIf3PwLXA8NgyrcNya0wXleG18SEmtdISRFT1NVWNxN6+CwxuansRGQAUqOp/Y895fxz4coqzaUyXZU8yNB2lM7SJ/C/wSsL7w0TkQxF5R0QmxdIGAVsSttkSSzPGJBGKhsj2ZdsgQ5NyKXs8roi8AfRPsuo2VX0+ts1tQASYHVu3HShW1TIRGQ88JyIjgWR/CdrEua/FrfqiX79+lJaWtjr/ihKKhvBIeuJsoDrAqkWr0nLuVLLr6hiOOvg8PtbL+jYfo6qqqk1/O52dXVf7SlkQUdUzmlovIt8AzgVOj1VRoapBIBh7vUREPgaOwi15JFZ5DQa2NXHuB4EHAUpKSnTy5Mmtzn84Gk7rM9ZXLVrFyAkj03LuVLLr6hhVwSqKexST5ctq8zFKS0tpy99OZ2fX1b7S1TtrGnAz8CVVrUlI7yMi3tjrw3Eb0D9R1e1ApYicGOuVNR14Pg1ZN6bLsPYQ0xFSVhJpxh8BP/B6rM723VhPrFOAX4pIBIgC16nqntg+1wN/BbJx21BeOfCgxhh7kqHpWGkJIqp6ZCPpzwLPNrJuMTAqlfkypjsIR8MU+AvSnQ1ziOgMvbOMMe0o4kRskKHpMBZEjOmGbNJF01EsiBjTjTjq4PV48XnS1dxpDjUWRIzpRsLRsD3J0HQoCyLGdCNhJ0xuRm66s2EOIRZEjGklR510Z6FRqorf5093NswhxCpOjWmFmlANDg6OOmT5sjpdA7YgnS5PpnuzIGJMC4SjYWojtfTM6knvnN6EoiE+r/qcymBlp+lOGx9kmK753syhyYKIMU1QVWrCNXjEQ3FhcV3AyPZkM7THUCqCFeys3omjDqqa1gbtcDRMob8wbec3hyYLIsY0Il766JXdi6LsogbTiIgIhVmF5GXm8Zl8RmWokkxv5kFNengwIk6E7IzstJzbHLqs3GvMAVSVqmAVUSfK0MKh9M3t2+Q8VPFxGYf1OIwMTwYVwQoiTqTR7VPJ2kNMR7OSiDEJQtEQgXCA3jm96ZXTq1XtC36fn8EFg6kJ1/B51ecEIgFyMnI6pI0iPsjQHodrOpoFEWNwSx/V4WoyPBkM6zmszVVSIkJuZi7Deg6jPFDOrupdeDyelDe+xwcZGtPRLIiYQ14wEiQYDdI7u/Wlj8Z4xEPP7J7kZeaxu2Y35cHylHYJjjgRemX0SsmxjWmKtYmYFqkOVVMZrCQYCaY7K+1GVakKVSEIw3oMo3du73avesrwZjAgfwBDC4eCQmWwkqgTbddzgPs4ZxtkaNLBSiKmSVEnSnWouu5b9d7avVQGK/GIh+yM7C47JiEYCRKKhuiT24ceWT1Sfh3ZGW6X4MpgJTurd6Jo+85xpdaobtLDgohpVCASIBKNMKhgEPn+fAByM3MJRUNUBivZW7uXqEbx+/xd5gbmqEN1qJosXxbDegzr0G/vIkJBVgG5mbnsrd1LWW0ZPo/voLvlRpwIfp+/ywZ007VZEDENqCrVoWoyvZkM6zmsQYDI9GZSlFNEz+ye1IZrKastozJYidfjJcuX1WlvZoFIgIgToW9uX3pk9UjbwECvx0vv3N7k+/PZVb2LymAlWb6sNvesskGGJp0siJh64tVXvXJ60Tun6TYCj3jIzcytK51UBCrYF9jX6Uon8dJHTkYOgwsGd5p8+X1+BhcOpjpUzedVnxOMBtvUJTjqRG2QoUmbtH1lFJHbRWS5iCwVkddEZGAsXUTkDyKyIbZ+XMI+3xCR9bHlG+nKe3cViASoDdcyqGAQfXP7tupmlunNpHdubw7vdTgD8wciCJXBSmrCNahqCnPdtNpwLTWhGvrn9e9UASRRvEtwn5w+1IRqqAnXtGp/RTvldZlDQzpLIr9R1f8PQES+C/wUuA44CxgeW04A/gycICK9gJ8BJYACS0TkBVXdm47MdyfNVV+1hkc85PvzyffnE4wEKQ+WUx4od3sPeTuu/SHqRKkJ15CTkUP/wv6dfhBevEtwvj+fspoy9tbuxe/zN9tmY4MMTbqlLYioakXC21zcwABwPvC4ul9f3xWRHiIyAJgMvK6qewBE5HVgGjCn43Ld/bSm+qq1/D4/fX19KcouojpUzZ7aPTiOQ224lixfVsraJGrDtUSdKAPyBpDvz+9ST/nzeXz0y+tHYVYhn1d9TkWggtzM3EanXQlFQ/YQKpNWaW0TEZGZwHSgHJgSSx4EbE7YbEssrbH0ZMe9FrgWoF+/fpSWlrY6b4oSiobS1kgcqA6watGqlJ5DVVFVMrwZ7JAdKT1XXCgQYuPSje5YCXGff9Ge3VyjGq2by2ob29rnuC1QVVXVpt+z5jjqEHbCAEl/Fx11yPBksE7Wtfu5U3VN6WbX1b5SGkRE5A2gf5JVt6nq86p6G3CbiMwAbsStrkp2R9Em0hsmqj4IPAhQUlKikydPbnXew9EwG/dtJC8zr9X7todVi1YxcsLIlBw7sfpqYMHADq1PLy0tZfLkyXUloLLaMkLRED6P76BKJ/G2l/55/eu6I3ek+HWlQtSJNtoluCpURXFhcUpmDk7lNaWTXVf7SmkQUdUzWrjpk8BLuEFkCzAkYd1gYFssffIB6aUHnclDTCqrr1rD6/FSkFXgtp1Eg+yr3UdF0K3hzMrIwudp2a9mxIlQE6qhMKuQPrl9WrxfVxLvElyQVcCu6l1UBCrIzsiuawexRnWTTunsnTU84e2XgLWx1y8A02O9tE4EylV1O/AqMFVEeopIT2BqLM200MH0vkoVESHLl0X//P4c3utw+uX1I+JEqAxWUhuubbJnV02ohlAkxOCCwQzIH9AtA0iiTG8mgwoGUdyjmKhGKQ+U4/faIEOTXun8q7tLRI4GHOAz3J5ZAC8DZwMbgBrgSgBV3SMitwOLYtv9Mt7IbpoWn6HW7/UzuGfn7OYKbqNyYVYhBf4CApEAewPuFCuCkJ2RXde4HC999MzuSVFOUbcPHgfKychhWI9hVAQr8Nj0dybN0tk76yuNpCtwQyPrHgUeTWW+upuoE6UqVEXvnN4U5RR1iW+tIm7QyM7IJpIbqZtipTpcjQcPXo+XIYVDyM08dHslecRDj6we6c6GMTZivTuLz301uGBwWhqb24PP46Nndk96ZPWgNlJLMBKkwF/Q5JMGjTEd55AMIuFwmC1bthAIBBrdRlWJOBFCEurAnO1X1LOIPZvaVlunuF13RQSveNmya0s7567tCgsLWbNmzUEdYwcd0x25KVlZWQwePJiMDBvkZw5th2QQ2bJlC/n5+QwbNqzRLqWOOmkfJ5KV24Zum7GxEj6PD5/H1+kG2lVWVpKf3zVLRXGqSllZGVu2bOGwww5Ld3aMSavOX0GeAoFAgKKiok53gz1YqoqDQ6Y3kwxvRre7vs5CRCgqKmqyJGvMoeKQLIkA3e4G66iDIGR6M7tE43lX191+f4xpq0M2iHQXqoqjTqetvjLGdG/2lbUFPE/OIePw4WRkZJFx+HA8T7Z9zseysjImjJ/AhPETKB5UzGHFh9W9D4Va1oh/zVXXsG7dOhx16qYBP7D66v7772f27NltzqcxxrSElUSa4XlyDt7rvo3UxJ7xsGkT3uu+DYBz2aWtPl5RURGLlrjjJW//xe3k5uXygx/+oN42qorjOI0e46FHHqqrvsrwZiStvrrhhqRDbdIufm0ej31/MaY7sL/k//s/mDy5wSJTTiPz9Kl4r/nW/gASIzU1eK/5Fr7Tzky6eH/ww1ZnY8OGDXxh7Be44ds3cMKEE9ixYwfXX3c9E0+YyHFjjmPm7TMB9yY8+ZTJrFi2Ao966NWzF7fccgtjx45l4sSJ7Ny5E4Cf/OQn/O53vwPg5JNP5pZbbuH444/n6KOP5j//+Q8A1dXVfOUrX2Hs2LFceumllJSUsHTp0gZ5u+mmmzj22GMZM2YMN998MwA7duzg/PPPZ8yYMYwdO5b33nsPgF//+teMGjWKUaNGcd9999Vd26hRo7juuuuYNGkS27dv55VXXmHixImMGzeOiy++mOrq6lZ/ZsaY9LMg0pxgsHXpB2HN6jVceeWVvL/4fQYOHMjMO2fy3/f+y+IPFvPmG2+yatUqFHf8R7z6qry8nFNPPZVly5YxceJEHn00+YB+VeX999/nN7/5Db/85S8BuO++++jfvz/Lli3jlltu4cMPP2yw3+eff87LL7/MqlWrWL58OTNmzADcks6ZZ57J8uXLWbJkCSNGjOD9999n9uzZvP/++/z3v//lT3/6E8uXLwdg9erVXHXVVSxcuJCMjAzuuusu3nzzTT744APGjBnD73//+3b/PI0xqWfVWbFv6wfS2DgR/xFHw6ZNDTcoLiby1uvtmpXDjzickgklde+fmvsUf33sr0QiEbZv287aNWsZO3oskjArfnZ2NmeddRYA48ePZ8GCBUmPfeGFF9Zt8+mnnwKwcOHCupLF2LFjGTmy4dTzvXr1wuPxcM0113DOOedw7rnnAu6003PnzgXA5/NRUFDAggUL+MpXvkJOTg4AX/7yl1m4cCFTp07liCOOYMKECVRWVvKf//yH1atXc9JJJwEQCoU4+eST2/y5GWPSx4JIM6J3/LJ+mwigOTlE7/hlu58rN3f/XFAff/wxf7zvjyz8z0IKCgu46ptXEQlFGrR/ZGbun0zR6/USiUSSHtvv9zfYpiXPPs/IyGDx4sW8/vrrzJ07lz//+c+89tprQMNurk0dL/HaVJVp06Yxa9asZs9vjOncrDqrGc5llxL9y5/Q4mJUBC0uJvqXP7WpUb01KioqyM/LJ78gn7KdZbz+2uvt3n335JNP5umnnwZgxYoVrF69usE2lZWVVFRUcO6553LvvffWVXlNmTKFv/zlLwBEo1EqKio45ZRTmD9/PrW1tVRVVfH8888zadKkBsc86aSTeOedd/jkk08At21m/fr17XptxpiOYSWRFnAuuzTlQaPe+RyHsceNZcSxIyg5roTDDz+c//mf/2n383znO99h+vTpjBkzhnHjxjFq1CgKCwvrbVNeXs6FF15IMBjEcRzuueceAP74xz9yzTXX8MADD+Dz+XjggQc4/vjjufTSS5kwYQIA119/PaNHj2bDhg31jtmvXz8eeeQRLr744rpuzXfeeSfDhw/HGNO1SEuqNLqykpISXbx4cb20NWvWMGLEiCb3S8fcWY663Xp9Hh+11bUpn2MqEokQiUTIyspi/fr1TJ06lfXr1+Pzpe67RXeYOysu8feoOz5ytTteE9h1tYSILFHVkua3tJJIp+CoAwo+rw+veDts1HlVVRWnn346kUgEVa0rVRhjTEvZHSON6oKHx4fX23HBI65Hjx4sWbKkQ89pjOleLIikQTx4eD1efF6b78oY03WlpXeWiNwuIstFZKmIvCYiA2Ppk0WkPJa+VER+mrDPNBFZJyIbROSWdOT7YDnq4DgOXvHi9/ltunZjTJeXri6+v1HVMap6HPAi8NOEdQtU9bjY8ksAEfEC9wNnAccCl4rIsR2e6zZKDB6ZPnvWhzGm+0hLEFHVioS3uUBzXcSOBzao6ieqGgLmAuenKn/tJVnwsGd9GGO6k7Td0URkpohsBi6nfklkoogsE5FXRCQ+D8cgYHPCNltiaR1izso5DL9vOFl3ZDH8vuHMWdn0VPAtCR47duzgkksu4YgjjuDYY4/l7LPP5qOPPkrlZbTZsGHD2L17N0DdVCUH+uY3v8nf//73Jo/z17/+le3bt9e9v/rqq5MOcDTGdB0pa1gXkTeA/klW3aaqz6vqbcBtIjIDuBH4GfABMFRVq0TkbOA5YDiQrO6n0dKLiFwLXAvuwLbS0tJ66wsLC6msrGwy/4qiqjyz5hm++8Z3qY3UArCpfBPXv3g94UCYr434WoN9AHduK6HeHFf1tlPlS1/6EpdddhkPPfQQAMuXL2fjxo0MGDAAcEeB79u3D6/X22Q+O4KqUlVVhd/v59VXX0362YXDYWpra5v8XB955BGGDh1ad4333nsvQLP/Fx0tEom0qKtzIBCo+92qqqpq8HvW1XXHawK7rnanqmldgKHAykbWfQr0BiYCryakzwBmtOT448eP1wOtXr267vX3XvmenvrYqUmXSY9OUv/tfuXnNFj8t/v1lEdP0VMePUUnPTpJJz06SU959BQ99bFT9XuvfK/BORO9+eabOmnSpKTr3n77bZ08ebJedNFFOmLECFVV/e1vf6sjR47UkSNH6r333quqqlVVVXr22WfrmDFjdOTIkTp37lxVVb355pt1xIgROnr0aP3hD3/Y4Ph/+tOf9Kabbqp7/9hjj+mNN96oqqrnn3++jhs3To899lh94IEH6rYZOnSo7tq1S1VVc3NzVVXVcRy94YYbdMSIEXr22WfrWWedpc8884yqqv7iF7/QkpISHTlypF5zzTXqOI4+88wzmpubq0ceeaSOHTtWa2pq9NRTT9VFixapquqTTz6po5udw6YAAA/BSURBVEaN0pEjR+qPf/zjunPn5ubqrbfeqmPGjNETTjhBd+zY0eCaSktLdezYsTp27Fg97rjjtKKiQlVVf/WrX+moUaN0zJgxevPNN6uq6ocffqgnnHCCjh49Wr/85S/rnj17VFX11FNP1RkzZugpp5yid999t+7cuVMvvPBCLSkp0ZKSEl24cGGD8yb+Hr399ttJ/z+7su54Tap2XS0BLNYW3sPT1TsrcX6LLwFrY+n9JdbiLCLH41a3lQGLgOEicpiIZAKXAC90RF6D0eRTvgejQbe0giIIHvG0uLF85cqVjB8/vtH177//Pj/96U9ZvXo1S5Ys4bHHHuO9997j3Xff5aGHHuLDDz/kn//8JwMHDmTZsmWsXLmSadOmsWfPHubPn183bftPfvKTBse+6KKLmDdvXt37p556iosvvhiARx99lCVLlrB48WL+8Ic/UFZW1mge58+fz7p161ixYgUPPfRQ3TNKAG688UYWLVrEypUrqa2t5cUXX+Siiy6ipKSEhx9+mKVLl5KdnV23/bZt27j55pt56623WLp0KYsWLeK5554D3Hm1TjzxRJYtW8Ypp5xSV3JLdPfdd3P//fezdOlSFixYQHZ2Nq+88grPPfcc7733HsuWLePHP/4xANOnT+dXv/oVy5cvZ/To0fziF7+oO86+fft45513+OEPf8j3vvc9vv/977No0SKeffZZrr76/2/v7IOsrK87/vmyL2zWF95EB7OkCwlQwUUWEZkoqNjQZavBBawwaNQqjW8dqYMF6oxjrFFimmRDMVKiEEJakKIQx6m1blhA6yIEsry6VKhJFYkKDIsrLJXl9I/ndy+X5e6y3Fm4e3fPZ+bO/T2/e57nnvOc5z7n/l6e87u3yXPhOB2ZdD0nMlvSAOA48AfgvlA/Ebhf0jHgCDApRMVjkh4C3gCygAVmtr01FCkvSZ4KPpb2ZMDcAfxv7amp4Htf2JuK71SQ3Sm71QfLhw8fTmFhIRClay8rK4tnwR0/fjxvvfUWJSUlTJ8+nRkzZnDTTTcxcuTIeAqTe++996S07Yn07NmTvn37sm7dOvr168fOnTvjebnmzJnDihUrAPjwww95//336dGjR1Id165dy+TJk8nKyuLSSy9l9OjR8c8qKyt59tlnOXz4MAcOHGDQoEHcfPPNTdq7YcMGrr/+enr27AnAlClTWLt2Lbfccgu5ublxO6688krefPPU9PvXXHMNjzzyCFOmTGH8+PEUFBRQUVHB3XffHU9L3717d2prazl48CDXXXcdAHfeeSe33npr/DixYApQUVFx0njNoUOH2lXKFsdpLdI1O2uCmV1u0TTfm81sT6ifa2aDzOwKMxthZu8k7PPvZtbfzL5uZt8/V7o+ecOT5Ofkn1SXn53P0zc+TW5WbkoBZNCgQc0+Kd44bXoy+vfvz8aNGykqKmLWrFk8+eSTZGdns379eiZMmMDKlSspKSmhoaGBIUOGMGTIEB5/PJq/cNttt7Fs2TJefvllysrKkMTq1aupqKigqqqKzZs3U1xcTH19fbN2JGt51dfX88ADD7B8+XK2bt3K1KlTT3ucpmyEKBV97HuaSnU/c+ZMXnjhBY4cOcKIESOoqanBzM54GnXieT9+/DhVVVVUV1dTXV3Nnj17PIA4ThJ8vulpmHz5ZH5W+jN6X9gbIb7W5WvM//Z8bh98e8rHHD16NEePHj2pa2bDhg2sWbPmFNlRo0axcuVKDh8+zBdffMGKFSsYOXIkH3/8Mfn5+dx+++1Mnz6dTZs2UVdXR21tLaWlpZSXl1NdXU1WVlb8Rhhb0XD8+PGsXLmSJUuWxP9919bW0q1bN/Lz86mpqWHdunXN2jBq1CiWLl1KQ0MDe/fupbKyEiAeMC666CLq6upOmrF1wQUXUFdXd8qxrr76atasWcO+fftoaGhgyZIl8dZCS9i9ezdFRUXMmDGDYcOGUVNTw5gxY1iwYAGHwzowBw4coEuXLnTr1i2+cNfixYub/J4xY8Ywd+7c+HayZYMdx/G0J81iZjRYA5Mun8Qdg++gU6fWibmSWLFiBdOmTWP27Nnk5eVRWFhIeXk5e/bsOUl26NCh3HXXXQwfPhyIpsUWFxfzxhtv8Oijj9KpUydycnJ4/vnn+fzzzxk3bhz19fWYWXz2U2O6devGwIED2bFjR/y4JSUlzJs3j8GDBzNgwABGjBjRrA1lZWWsWrWKoqIi+vfvH78Zd+3alalTp1JUVERhYWE8LTxE04CnTZvGY489RlVVVby+V69ePPPMM9xwww2YGaWlpYwb1/LHgMrLy6msrCQrK4uBAwcyduxYOnfuTHV1NcOGDSM3N5fS0lKefvppFi1axH333cfhw4fp27cvCxcuTHrMOXPm8OCDDzJ48GCOHTvGqFGj4uunOI5zAk8F3wRmxpfHvyRb2a0WPM6E9tr/3p7s8lTwmYnbdXo8FXwrIIncrNzTCzqO43RgfEzEcRzHSZkOG0Taezeec3bx68dxIjpkEMnLy2P//v1+I3BSwszYv38/eXl56VbFcdJOhxwTKSgo4KOPPuKzzz5LtypNUl9f3y5vUu3Frry8PAoKCtKthuOknQ4ZRHJycujTp0+61WiW1atXU1xcnG41Wp32apfjdFQ6ZHeW4ziO0zp4EHEcx3FSxoOI4ziOkzLt/ol1SZ8RZQrONC4C9qVbibOA25U5tEebwO1qCX9iZj1bItjug0imIum3LU07kEm4XZlDe7QJ3K7WxruzHMdxnJTxIOI4juOkjAeRtsv8dCtwlnC7Mof2aBO4Xa2Kj4k4juM4KeMtEcdxHCdlPIg4juM4KeNBJE1IWiDpU0nbEuqekLRHUnV4lSZ8NkvSLkk7Jf15erRuHkm9JVVKek/SdkkPh/rukt6U9H547xbqJWlOsGuLpKHptSA5zdiV6f7Kk7Re0uZg1/dCfR9J7wZ/vSQpN9R3Dtu7wueF6dQ/Gc3Y9AtJHyT4akioz4hrMIakLEm/k/Ra2E6/r8zMX2l4AaOAocC2hLongOlJZAcCm4HOQB9gN5CVbhuS6NkLGBrKFwD/HXR/FpgZ6mcCPwjlUuB1QMAI4N1023CGdmW6vwScH8o5wLvBD8uASaF+HnB/KD8AzAvlScBL6bbhDGz6BTAxiXxGXIMJ+j4C/CvwWthOu6+8JZImzGwtcKCF4uOApWZ21Mw+AHYBw8+aciliZnvNbFMofw68B3yVSP9FQWwRcEsojwN+aRHrgK6Sep1jtU9LM3Y1Rab4y8ysLmzmhJcBo4Hlob6xv2J+XA7cKEnnSN0W0YxNTZER1yCApALgL4AXwrZoA77yINL2eCg0qxfEun2IblgfJsh8RPM3sbQTms/FRP8ELzGzvRDdkIGLg1im2wUZ7q/QPVINfAq8SdRqOmhmx4JIou5xu8LntUCPc6vx6Wlsk5nFfPX94KufSOoc6jLGV0A58HfA8bDdgzbgKw8ibYvnga8DQ4C9wI9CfbJ/EG12brak84GXgWlmdqg50SR1mWRXxvvLzBrMbAhQQNRauiyZWHjPCLsa2yTpcmAW8KfAVUB3YEYQzwibJN0EfGpmGxOrk4iec195EGlDmNkn4QdwHPg5J7pAPgJ6J4gWAB+fa/1agqQcohvtv5jZK6H6k1gXQXj/NNRntF3twV8xzOwgsJpoXKCrpNiCdYm6x+0Kn3eh5V2y55wEm0pCl6SZ2VFgIZnnq2uAb0v6PbCUqBurnDbgKw8ibYhGfbFlQGzm1qvApDDjog/QD1h/rvU7HaHP9UXgPTP7ccJHrwJ3hvKdwK8T6r8TZsiMAGpj3V5tiabsagf+6impayh/BfgzovGeSmBiEGvsr5gfJwKrLIzcthWasKkm4U+MiMYNEn3V5q9BM5tlZgVmVkg0UL7KzKbQFnyVjhkG/jKAJURdIF8S/Wu4B1gMbAW2hIugV4L8Y0T91TuBsenWvwmbriVqMm8BqsOrlKgv9jfA++G9e5AX8FywayswLN02nKFdme6vwcDvgv7bgMdDfV+ioLcL+Degc6jPC9u7wud9023DGdi0KvhqG/ArTszgyohrsJGN13NidlbafeVpTxzHcZyU8e4sx3EcJ2U8iDiO4zgp40HEcRzHSRkPIo7jOE7KeBBxHMdxUsaDiJPxSOqRkJ31j40y6+a28BgLJQ04jcyDkqa0jtZtA0lvxzLaOk4q+BRfp10h6Qmgzsz+sVG9iK7340l37KBIeht4yMyq062Lk5l4S8Rpt0j6hqRtkuYBm4BekuZL+m1Ya+LxBNm3JQ2RlC3poKTZYU2KKkkXB5mnJE1LkJ+taO2KnZK+GerPk/Ry2HdJ+K5T/ulLukrSGkkbJb0u6RJJOWH72iDzQ51YD+N7kjbE7IllZA16/FjSW5J2SBomaYWi9SWeSDgP2yUtlrRV0rLwNHdjncYGezcpWovivAQ9dihKXviDVnWSk/F4EHHaOwOBF82s2Mz2EK1rMgy4AviWpIFJ9ukCrDGzK4Aq4K+aOLbMbDjwKBALSH8D/DHsO5so4+/JO0UZZH8KTDCzK4meoP4HM/sSuBuYL2kMUX6kp8JuPzWzq4CioF9JwiGPmNlIotQsK4H7gtxfx1KAhPPwnJkVAfXAdxvpdDHRWi83mtlQoie+H5Z0CdHT+YPMbDDwTBPnwumgeBBx2ju7zWxDwvZkSZuIWiaXEd1cG3PEzF4P5Y1AYRPHfiWJzLVECfIws83A9iT7XQYMAioUpSyfSUiWZ2Zbwv6/Bu4OgQWi9SDWEy12dV3YP8ar4X0rsNWixJD1wO+JkvIBfGDRehkQBa1rG+n0TaJz8U7QaUqw6QBR6vGfSyoDvmjiXDgdlOzTizhORhO/6UnqBzwMDDezg5J+RZRjqDH/l1BuoOnfydEkMi1Z+EfAltB6SMblROs/xLrR8oG5RKsr7pH0VCO9Y3ocTyjHtmN6NR78bLwt4D/M7I5TlJWGAd8iSvx3PzCmadOcjoa3RJyOxIXA58ChkNX1bKx9/jbwlwCSikje0tkBfFXS8CCXK2lQKN8GnE+UZO85SRcCXyEKCPskXQBMSEGvPpKuCuXJQc9E3gGuk9Q36HGepH7h+y40s9eAvyVJ95zTsfGWiNOR2ER0A98G/A/wX2fhO/4J+KWkLeH7thG1KuKY2VFJE4E54SadDfxI0mdEYyDXhxbHPwM/MbN7JC0Kx/oDJ1ZVPBO2A1MlvQjUAPMb6fSJpHuAlxKmRf89cAR4JYzjdCJa49tx4vgUX8dpRRQtAJRtZvWh++w/gX52YgnTdOj0DWC5Rav9OU6r4i0Rx2ldzgd+E4KJgO+mM4A4ztnGWyKO4zhOyvjAuuM4jpMyHkQcx3GclPEg4jiO46SMBxHHcRwnZTyIOI7jOCnz/w7iuSB/hj4NAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html\n",
"title = \"Learning Curves\"\n",
"\n",
"# Create the CV iterator\n",
"cv_iterator = KFold(n_splits=5, shuffle=True, random_state=10)\n",
"model = LinearRegression()\n",
"# model = KNeighborsRegressor(n_neighbors=2)\n",
"\n",
"plot_learning_curve(model, title, X, y, cv=cv_iterator, n_jobs=4)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Lasso Regression\n",
"\n",
"“when you have two competing theories that make exactly the same predictions, the simpler one is the better.” - William of Ockham\n",
"\n",
"So for a regression model LASSO (least absolute shrinkage and selection operator), or more commonly referred to as L1 regularization, could be used to penalize for the large number of parameters.\n",
"\n",
"* L1 regularization (the last term of the equation) favors a sparse model with features having coefficients equal to zero or close to zero:\n",
"\n",
"$$ Loss = ||y - Xw||^2_2 + \\alpha * ||w||_1$$\n",
"\n",
"L1 norm $||w||_1$ is simply a sum of absolute values of coefficients and $\\alpha$ regulates the strength of regularization. A zero coefficient for a feature essentially mean that the feature is eliminated.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"34.634124343427146"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.linear_model import Lasso, LinearRegression\n",
"from sklearn.model_selection import cross_val_score, KFold\n",
"from sklearn.metrics import mean_squared_error\n",
"\n",
"llr = Lasso(alpha=0.5)\n",
"llr.fit(X, y)\n",
"preds = llr.predict(X)\n",
"\n",
"# Create the CV iterator\n",
"cv_iterator = KFold(n_splits=5, shuffle=True, random_state=10)\n",
"\n",
"# Note: default in sklearn: higher return values are better than lower return values\n",
"cross_val_score(llr, X, y, cv=cv_iterator, scoring=\"neg_mean_squared_error\")\n",
"cross_val_score(llr, X, y, cv=5, scoring=\"neg_mean_squared_error\")\n",
"abs(np.mean(cross_val_score(llr, X, y, cv=5, scoring=\"neg_mean_squared_error\")))"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl8lNX1/9939uwJiyyBgLhVdhUQFBFFEZeqoC0q1WIruPvDHYt1a7HUtu513+pS0K8Va11qRQVFUQRFBRRF0IQk7CHbzGSW5/7+uDOTSTJZCAlDJufN63nNsz/nzoT7ee45956rtNYIgiAIQmPYkm2AIAiCsG8jQiEIgiA0iQiFIAiC0CQiFIIgCEKTiFAIgiAITSJCIQiCIDSJCIUgtACl1FtKqV8n2w5BSAYiFMI+jVLqR6XUCcm2Q2t9stb6H+1xb6VUtlLqXqVUoVKqSim1PrLdrT2eJwi7iwiF0OlRSjmS+GwX8C4wCJgEZANHATuAUa24X9LKIqQuIhRCh0UpdZpSapVSapdS6mOl1NC4Y7OVUj8opSqVUmuVUpPjjk1XSn2klLpHKbUTuC2yb6lS6q9KqTKl1Eal1Mlx1yxWSl0Ud31T5+6vlPog8uxFSqm/K6Web6QYFwAFwGSt9VqttaW13qq1/oPW+s3I/bRS6sC4+z+jlPpjZH28UmqTUupGpdRm4Gml1DdKqdPizncopbYrpQ6PbI+OfF+7lFJfKqXG1/tuNkRs36iUmta6X0dIJUQohA5JpNJ7CrgY6Ao8CrymlHJHTvkBOAbIAW4HnldK9Yq7xZHABmA/YG7cvnVAN+Au4EmllGrEhKbO/SewPGLXbcD5TRTlBOC/Wuuq5kvdKD2BLkA/YCYwHzg37vhJwHat9edKqXzgDeCPkWuuA/6llOqulMoA7gdO1lpnYVo2q/bALiFFEKEQOiozgEe11p9qrcOR+EENMBpAa/1/WuuSyBv6i8D31HXllGitH9Bah7TWvsi+n7TWj2utw8A/gF5Aj0aen/BcpVQBMBK4RWsd0FovBV5rohxdgdJWfQO1WMCtWuuaSFn+CZyulEqPHD8vsg/gV8CbWus3I9/NO8AK4JS4ew1WSqVprUu11mv20DYhBRChEDoq/YBrI+6TXUqpXUBfoDeAUuqCOLfULmAw5u0/SlGCe26OrmitvZHVzEae39i5vYGdcfsae1aUHRiR2RO2aa39cfasB74Bfh4Ri9OpFYp+wC/qfW9jgV5a62pgKnAJUKqUekMp9bM9tE1IAUQohI5KETBXa50bt6RrrecrpfoBjwNXAF211rnAaiDejdReaZNLgS5xb/NgBKwxFgEnRdw+jeEF4u/Xs97xRGWJup/OANZGxAPM9/Zcve8tQ2s9D0Br/bbW+kSMeH2L+R6FTo4IhdARcCqlPHGLA1OBXaKUOlIZMpRSpyqlsoAMTOW5DUApdSGmRdHuaK1/wrhyblNKuZRSY4CfN3HJc5jK+19KqZ8ppWxKqa5Kqd8ppaLuoFXAeUopu1JqEnBsC0xZAEwELqW2NQHwPKalcVLkfp5IQLyPUqqHUur0iGjVAFVAeHfKL6QmIhRCR+BNwBe33Ka1XoGJUzwIlAHrgekAWuu1wN+AZcAWYAjw0V60dxowBuNW+iPwIqbibYDWugYT0P4WeAeowATCuwGfRk77fxix2RW596vNGaC1LsWU/6jI86P7izCtjN9hhLQIuB5TF9iAa4ESYCdGkC5raaGF1EXJxEWC0L4opV4EvtVa35psWwShNUiLQhDaGKXUSKXUARE30iTMG3yzrQBB2FeRUZyC0Pb0BF7BdH3dBFyqtf4iuSYJQusR15MgCILQJOJ6EgRBEJokJVxP3bp10/3790+2Ga2iurqajIymutB3PFKxTCDl6mikYrnaukwrV67crrXu3tx5KSEU/fv3Z8WKFck2o1UsXryY8ePHJ9uMNiUVywRSro5GKparrcuklPqpJeeJ60kQBEFoEhEKQRAEoUlEKARBEIQmEaEQBEEQmkSEQhAEQWgSEQpBEAShSUQoBEEQhCYRoRAEQRCaRITC54OKCpCcV4IgCAlJiZHZe4TfD8XFkJEBPXpAenrz1wiCIHQipEUB4PGAUlBYaESjJuFkZIIgCJ0SEYooLhdkZ5sWxsaNsG0bhELJtkoQBCHpiOupPmlppoVRXg67dkG3bpCTAzbRVEEQOiedt/Z74QXo3x+6doVjj4VXXqk9ppSJVaSlmZbFjz9CdbUEvAVB6JR0zhbFCy/AzJng9ZrtkhK44QazPmVK7Xk2G2RmGhdUUZERj/32My0OQRCETkLnbFHMmVMrElF8Ppg3L/H5DoeJX4TDpnWxZQsEg+1upiAIwr5A52xRFBYm3l9cbNxLSiU+7nabpbLSxC+6dzfxC7u9/WwVBEFIMp2zRVFQ0PixM86ADz5oOh6Rnm7GXWzfbloYMmBPEIQUpnMKxdy5DQfWpaXBL39p4hXnnmtiFUuXNi4A0fiFywWlpfDTT8Z9JQiCkGJ0TqGYNg0eewz69TNupt694a674J574KOPjJAUFsLUqXD22bBsWeP3stshK8us//STEZpAYO+UQxAEYS/QOYUCjFj8+CPs2AFLltT2dnK7Yfp0Ixh/+IMZfHf22fCLX8CnnzZ+v+iAPZ/PXLN9uwl+C4IgdHA6r1A0h8cDv/mNEYzbb4fvvzdics458NlnjV+XlmZcUmVlsGGDGbhnWXvPbkEQhDZGhKI50tLgoouM++mWW+Cbb+DMM+G882DlysTXKGWC3R4PbN5cO2BPEAShA5IUoVBK/UIptUYpZSmlRtQ7dpNSar1Sap1S6qRk2JeQtDS4+GIjGDffDF9/DaefDuefD6tWJb4mGr+w22HTJjNoTxIOCoLQwUhWi2I1MAX4IH6nUmogcA4wCJgEPKSUat9BCi6X6dlUVdWyJIDp6XDppfDJJ/C738EXX8Cpp8IFF8BXXyW+xuk0ghEM1g7Yk4SDgiB0EJIy4E5r/Q2Aajiw7Qxggda6BtiolFoPjAKa6Ha0h2RkwIABRih27DDBaLfbCEhz111+Ofz61/DUU/Doo3DyyTBxIlx7LQwe3PAaj6d2wF55uRmwJ6Q2WpsYVfxn/X3RJRRq+Bk9v3dv06oVhCSgdBIHiimlFgPXaa1XRLYfBD7RWj8f2X4SeEtr/XKCa2cCMwF69OhxxIIFC9rGqPj/oNDirLH26mr6vPoqff71L5xVVWw76ih+PP98qg84oMlnVdXUkJmZmVLZaauqqkyZUoG4/x9VVVVkZmQ0PBatzOvvaw1xL0/7vfceA55+Gve2bdR0786GGTPYesIJrbtvE6TU7xVHKparrct03HHHrdRaj2juvHYTCqXUIqBngkNztNb/jpyzmLpC8XdgWT2heFNr/a+mnjVixAi9YsWKtjTfzEtRVmZGXdts5m2uJZV5RQU88QQ8/rhZP+UUuOYaOPTQhKcvXr2a8f36tX8aEKUaT03S1DWJrq9/r/jvxWYzZRo8uO7+3bg+RrS3WLQijq+Qo8ca+0x0TWPXNpW2JY7FGzcyvn//2nNttobr9T9byyuvmESV8YM409LM39W0aa2/bwIWL17M+PHj2/Se+wKpWK62LpNSqkVC0W6uJ611a159NgF947b7ACVtY9Fu4vFAr15mPoryciMaWpv/rE1V6tnZRhh+8xvzn/qJJ+DNN+HnPzf7Dz647vlKmfhFWwp2W90r/j711+Mr3/jxItFjfn/j1zdla/3teHFpan99UYt+1heopu4Z5ZVXTILIkhLj8pk923SNttlqB1fuDoGA+RuKznESXY/frqiou++77xqOw/H5TFysjYVCEJpjX0sK+BrwT6XU3UBv4CBgeVItcjqNWOTlmTjG9u3GNdVcHCM3F66/3nStfewxePJJeP11k0vq6qvhwAPrnr8nb5/1ac29GqscW/t8t7t117alHa19fvybfHGx2Q4GcfXqBevWJa7g6wtAfKXv9zf9zPR0k1wyN9d89u1rumEnoqiobcsrCC0gKUKhlJoMPAB0B95QSq3SWp+ktV6jlHoJWAuEgMu11vvG8Ga73fwnzs42Kcq3bTNBaaez6fkp8vLgxhthxgwT8H7qKXjtNTMWY9Ys9nv3XbjwwuRVjNB45Qj7RiUdb4fWpotxTY15U6+pMRVx/Hb9pbn9fn/t+pIlDbsw+3xwzTUc1ZTtWVnm7yO6DBhQdzteCKJ/R7m55jPRC8eoUab89enVy/z91c9VJgjtSFKD2W1Fu8QoWoLPVxvHcDiMW6q5t/kdO+CRR+Dpp8Hnw7LZsMWP3E5LM3mnJk82LZdg0CzR9USfgUDTx5s75+mnTWupPunpxmUW30MHanvp1O/JE9neXlFBt4yMBvub7PmjtelenGieD5vN9DKLVu57ilK1PdDiF5cL1qxp9LJ1V13FIYceWlvBx1f6jjZ+50oUo7DZ4G9/M+N3+vdvsw4QqejLh9QsV8rFKDoFaWlm6dbNiMXOnbX7G4tjdO1qJk66+GI4+mhs9Stonw+uvNIsewO7vfGcVF4vfPhh4iBtY/uUwh0ImJHo9fbXOT9+ie5rbDIoyzIJGutX6m53bYUf3U60uFx1z3M4Ghf0xt7k8/MpPe00Dhk0qHXfc3PEd5O1LNPVuqYG7r7bZCfOyTFuLLfbCHx5uWmtCsJeQISiLXC5auMYUcEIhUzl5HQmvqZbt6bTelx9tanQnM7aJbpd/7OpY03dw+EwFXQTlSPLdz9EtHLNGsa3pkJtyo7bb9/9+7WG2bMT9zaaPbvl96hf6ce3mhrD4TCiHf/bXHSReaEIBo1YnHOOSVQ5YQJs3WpyijX29yUIbYgIRVtitxuxyMkxb+PbtxvhiL7R1qd378Yrxuuua397o7RF5ZgqdkRjIfEB9RtugNNOMz2RfL667jMwrZP4LrZRAY6v9KNCUL81FV2aQmvzd3TzzaZl9cgjZrDn1q3mb0UQ2hkRivYgOqlRRoYJlO7caQLfdnvdOMbs2YSvuw57fPA0GRV0osoxGUH11tpRf8xE/VhI/XPir4OGbqiJE80C5re0282iVG08IioG0SUqAq0Zr9IcSsF++8HQoaYTxMMPm9ZFdrZplcYPAhSEdkCEoj1RylT8+fkmCLtrl1nA7J8yhXWbNjHw+eeTW0GDeWZrntvYqORovKG5Ucv1j8dX0lHi4ziJKvf6sQ6brfYNPtFbfHzcpH78JNES5Ycfkpd2JS2tdozOf/9rXFAPPmjyhrVhYFsQEiFCsbdwucxbYZcupnWxcyeEw2w9/ngGXnVV2zwj0dt0otHJ9d+sW3LfaIVZfxRztIKqPxI5vgKOHq9/bmPHG6uwG6vYOwvdupm/ncsvN72fpk+HIUPMy0eXLsm2TkhhRCj2Ng5HbRyjutpkk62sNPtbU4nHE//GbLc3dI+05M060WjmRCOam6qgf/oJCgpaVwahcVwuIwjTp8OCBWZ+lLfeMrGw6PztgtAOiFAki2g6CJfLVKrV1bVvylF/eEsq80QuEiF1ycszLYibbzbp7ufPN1P1btsmgW2h3RCh2BeIjscQhOZwOIwL6rjjYMwY+POfzaDIYFAC20K7IREwQeho5OSYrre33GIG3t19txlFv3lz44MnBWEPEKEQhI6GzWZ6X+2/v8kk+8wzsGGDEYmysmRbJ6QgIhSC0BHJzDSDOK+6yqzfeqtpVezYIfOyC22OCIUgdESig/AyM83Yig8+gEWLjEtq69a2nd9E6PSIUAhCRyUtzcQrfvlLOOggkw9LKRPUTpQNWBBaiQiFIHRkunY14nDbbWZMzpNPGhfU1q0S2BbaDBEKQejIuFxGLEaONKlP7r3XxCksSwLbQpshQiEIHZ3cXPN5881mPMW8eaZVsX27BLaFNkGEQhA6Og6H6S7bo4eZcvell2DVKtPa2LJFAtvCHiNCIQipQDT9+WWXmd5Qv/+9EQqv1+QSE4Q9QIRCEFIBm80IhN1uUtV/8QUsXGhSekhgW9hDRCgEIVXIyDCD8E4/HYYPhzvvNBNngQlwC0IrEaEQhFQhOggvGIQ77jC5nx54wIy32LmzVjQEYTcRoRCEVCI6CG/gQDjrLHjsMSgsBLdbAttCqxGhEIRUo2tXCIXgpptMzOIPfzBC4fdLYFtoFSIUgpBqRAfhZWebpIFvvQUffmjGVmzZYkREEHYDEQpBSEXy8sznb39rZlC89dba+c4lsC3sJiIUgpCK2O0msB0OmwmO1q2D5583MYyyMvD5km2h0IEQoRCEVCUry6QdP+EEGDsW/vIXIxIejwS2hd1ChEIQUhWbzaT18PlMCvLKSvjb30wMo6YGKiqSbaHQQRChEIRUJj3dLPvvDxdcAM8+C998YwbnSWBbaCEiFIKQykQH4QUCcO21pifULbeY/TYbbNuWbAuFVqK1Ru8l96FjrzxFEITk4fEYgfB64frrYc4c02X2lFOgvFxiFS1Ea00gHMAf8lNZU0nQCjY8Bw3NfJ068q+5ZyUSgZpQDd9t/67OvXI9ufTI7NGyQrQSEQpB6Ax07WpiEtOmwXPPmRQfxx9vRCQYNBMd2cTBEI/WmqAVxB/0UxWsojpQjaUtbMqG0+7EYWu8+lRKNXlvRdPHG7uHzWYj050Z2w6EA4Ss9ncfilAIQmcgOgivrMwEtqdONek9rrrKtCjKy2vHXnRiguEgNeEaqgPVVAYqCVthFAqn3Um6M71ZAUhVRCgEobOQl2eEYswY43Z64AH4xS9qYxWZmaY7bSciZIUIhANGGGoqzdu5Aruy43F4sClpZYEEswWh8xAdhOf1momNwmGTijx6bPv25Nq3F7C0hS/oY6dvJz+W/cgPO3+gqLyIipoKnHYnme5MMl2ZpDnTRCTikBaFIHQmsrJMCo9eveDii+H++8keNw4GDTLup5wc0502RbC0RSAcwBf0URmoxB/0o9HYbXZcdhdZjqxkm9ghSIpkKqX+opT6Vin1lVJqoVIqN+7YTUqp9UqpdUqpk5JhnyCkLPGD8K64Anr25MCHHjLB7LQ0M4eFZSXbylajtaYmVEO5v5ygFWT9zvUUlhey3bsdS1tkujPJcmeR7kxvMhgt1CVZbat3gMFa66HAd8BNAEqpgcA5wCBgEvCQUsqeJBsFITWJDsJzOGDOHLK/+w7+7/9MfCIUMi2LDkQgHKAqUEVpZSk/lP3AT7t+Ymv1VrTWZDgzyHRlkuHKwGV3JdvUDktShEJr/T+tdbRP1ydAn8j6GcACrXWN1nojsB4YlQwbBSFliR+EN3ky5QMHwp/+ZFJ8pKebObaDDccI7CuErBDVgWq2Vm9lw84NbCzbSEllCb6QD4/DQ6bbCINSqtP2Umpr9oVozW+AtyLr+UBR3LFNkX2CILQl0UF4fj/rL73U9Hq6/37jmnI4jFjsQ2it8QV9lFSWsKFsA5sqNlFZU4nL4SLLnUWmK1N6KbUj7eakU0otAnomODRHa/3vyDlzgBDwQvSyBOcnHMKolJoJzATo0aMHixcv3lOTk0JVVVWHtb0xUrFMkILl0hoCAar69aP0pJPo8dhjfDZyJL78fNMjat26fWIQnqUtQlYoNtitpa0Ef7WfNZ+taWfr9i71y6S1RinF97bv2/W5am/lCmnwYKV+DVwCTNBaeyP7bgLQWv8psv02cJvWellT9xoxYoResWJFO1vcPixevJjx48cn24w2JRXLBClaru3bWbxyJeN79IBjjjFjLJ55xriewmHo3z8pYhEIB6jwV1DmL8PSFh6HB6d998Z4rPlsDYNGDmonC5ND/TIFwgGcNif52a1zvCilVmqtRzR3XrJ6PU0CbgROj4pEhNeAc5RSbqXU/sBBwPJk2CgInYLoaOyuXWHWLHjnHVi8uDawvWvXXjNFa4036GVT+SY2lm2kzF9GmjONLHfWbouE0LYkq135IJAFvKOUWqWUegRAa70GeAlYC/wXuFxrHU6SjYKQ+tjtJibh9cJvfmNaELfealoUGRkmdhEItKsJYStMub+cjWUbKSwvJGAFyHJnkeHKkJjDPkJSOhJrrQ9s4thcYO5eNEcQOjd2u2lB2Gxw220wfbpxP82YURvY7tOnmZvsPjWhGsprytnl2wUKPA4PHqenzZ8j7Dki14Ig1A7CO+EEGD8e7r7bjOBOS4OqKrO0AVprqgPVFJYXsrFsIxU1FWS4zFgHGQC37yJCIQhC7SC8QMC0KrxeuOuu2mNbtpjgdisJWSHKfGWxrq1hK0y2J7tTZ2TtSIhQCIJQOwivpgYOOsi4n154AVavNu4ny4KiIti507Q8Wiga/pCfLVVb2LBzA9uqt5n8Su4s3A53+5ZHaFOkrScIgsHjMUkBvV645hp45RUT2H75ZRPYDgaNUITDRljcbpNkMC3NzHdhN9l2LG3hDXrZ6duJL+jDYXPERkoLHRMRCkEQaunWDTZuNKO2b7zRLP/5D5x+ugl4x89XERUOywKtCTptVLoVZfgJOWy43elkuSU7a7tgWWYJBmAvZMMToRD2KmErjKUtwjryaYVjk8cEw0GCVpBwpEe0y+7CbXfjcXhw2ByxxW6TPJHthtMJXbqYCY7OPReefRZuugn+8AcoLYXevWH2bJgyJSYc/pCfskA5lVXlqF1BPMpJmrKBy21aImlp5lyHVDdNorWp/MPhWiGwLDOeJRg0n4GAEXIrDCiwApCVC137t6tp8ssJe4zWuk7lb2mLyprKOpV/0AoSCkfyQKpI6gEUKLApW2xx2By4lMnyGbJCVAerqaipwNJWzHWhUDERcTvcuOwu7Da7ERFlFxfHnpKXVzvQ7oQT4L77areLi+GGG7DQVJ92EjtqyqgJB3AoOxmerLrffThsMtGW7QSUEYvMzM4nHIkq/+jI90DAfIbDRggAk7VI1X7abLWLUsZFGP2ea5QRmHamk/xSQmvQWtd584/m3Klf+YciiYCjlX/QClJaVRqrtO3KjtPmxOPYvT7yTrsTJw1H5Ebt8oa8VAWrsLQVe7ZSCofNgcfhiYlIVEAcNsc+KSJaazQ6JrJR4Y3fB8TKpyIp0aLrje1r7Jpmsduhe3czN8XLLzc87vMRvnMuJccPx2N3keXMaPw+aWm12+EwVFTUFY5oi8Pl6ljCEa3w4wUgWtkHgxAOQTAUV/nXQ8UJQHQci7uFAf4k/A13oF+m4xL9zx7vdom6XIJWkKLyIjNXbz125z93/DnR65qiqRGvUbviK+DoLRWqTgvA5XDhUXUFwKZsZLoym7WhtSilcChHo/3uw1YYf8hPdbAaKzIJj0bHRCTqzoqJSKQ10tpRwM1V9PEiG7bChHU4luQu+regar/guBuTeJ+qd0zHnRN3PFrm+sdtNhu2SIdHpRSBcIDC8sJ6vy0Q2sV+JSUJ/5ocpVvI3VZBuHevln9Rdnss4A0Y90llZaS1osER1+LYm8IRdfnEL9F9oZARgKjrp86bP9T5clW9t3+no+WV/z6OCEUraextO7oEwoHYeizxoqq9NvofMlqpJKr0dOLEuY3a05LrosfCTWRGsSlbh07ZbLfZG41jhK0wQSuI3+8nbIXr/CZOm9O4tBxu3HY3dpsdja7z+5ZWltbJZhr9G4h+5bHK2WwAxOZFiL7dx9xsyrjZ9nYrJyps0fX4fWEdrj2em0moR3ecmxumHFdAj/GnEfzZwfgnjMN/3DiCgw/dvQSCNjt4mhGOjAwzjqN+IL0p4it7v7+u7z++so8uVvT/QoLfIeruiVX+TiNi+0DLNO21t9jvbw9g37wVCgpg7lyYNq1dniVCEUd9X3t8BRGt+APhQJOVQ7y7xWFz4LI3XREopSTh2V7EbrNjx56wp0j0t66pqakVUl1b0Yd1GF/Il/SKfk+Jd0WhmvgbzHJTdc0V5NxyJza/P7bb8niovOpiADzvfUDmw0+R9fcnCO/XDf/4Y/BPGEfNmFHGl747JBKOqioo32UMdThqXVVa1630wyEIhWtdQZgU6hQXxxe8YcXvdu8TqdR3l7TX3iLn5j/W/i4//QQzZ5r1dhCLTi8U1YFqtnu3x1wtQAMBiHe12G32Dlk5CM1jUzYzXWYjnaqiLa1Og1L4pk+DQICsh57AXrqFcK8eVF5zBb7TTwag+qILsO0sw/3Bx3jeW0LaG2+T8dJCLI+bmqNHU3P8OPzjx2J177b7z29UOCJTtdav9B0RX3/0/6atyghLqhAK4dm8GdfmQrL/cFcd8QbM+Jc5c0Qo2oNAOEBNuIZ0Z3qHdbUIQrvh8eCbOsUIQyMtBKtLHr4zT8V35qkQCOBevhL3ex8a4Xh3CQCBYYPxH29cVKFDDmyd66a+cKQaWmMr24W9aBP2ohIcRcXYNxVHPkuwl26md3Mj4gsL28W0Ti8UUNs9UxCEBHTpYiogrZuv4F0uasaOoWbsGCp+fz2OdevxvLcEz3sfkH3PQ2Tf8xCh/F74jx9HzfHjqBl5BLg6j+tV+Xym0o8XgKJiHJuKsRcVY/P66pwf7taVcJ/eBA4bQvjnkyj0ZNLjsEPJu/732Ldsa/iAgoJ2sVuEQhCEpnE6zdiKHTtMq6KlQWWlCP3sIKp+dhBVl12Ebes2PO9/iOf9D8l46VUyn3sRKyODmnFj8B9/LP5xR6Hzctu3LHtI2mtvkXX3gwndcACEw9i3bMVeVFxHABwRQbBv31HnflZ6GuE+vQn17UPN6JGE++YT6pNPuG8+4fze6PS0OueXbNhM3oCeVFz//+rGKMAE/ee2zwwNIhSCIDRPbq4RiIoKqK4CFQkE21vuCrL264536hS8U6egfD5cyz7D8+4SPIs/JO2tRWibjcARw/Effwz+448lvH+/dizQ7pP26hvk3DIXm78GAEfJZnJn30bay/8Gu82IQUkpKljbfVbbbIR79yTcJx//+LGE+/Yh3Lc3ob75hPvkY3XJa5UbLipOWZFeT0p6PQmCkHRsNpMAMCvLjCnwek03Vr/PxA52s/eQTkszrqfjx1FuWTi/Xovn/Q/wvPsBOX++j5w/30do/34mrnH8OAKHDSXtzXeafptvjkAAW2UVqqISW0UltqradVVVha2iyqxXVmGrjPusqMRWWYWtqrrBLVUohHv5CoKDBhIcdCi+kyYA/xivAAAgAElEQVTUbRX06tHyFthu4jv9ZMpPOhany0P+wc1Oe71HiFAIgrB7OJ0my2xOjklLXl1tWhrhENgjg8x25y3ZZiM4bDDBYYOpnHUZ9uJS3O99gOf9D8h4dj6ZTz6HlZaGCtSgwqZnoqNkM7m/ux3nylWEDj7AVPLRyr2iElVZycjtZWTU+LFFREDV1DRphrbZ0NlZWJmZWNmZ6OwsQn37mH3ZWWQ888/EQ1k1bP/Xsy0vbwekxUKhlBoLHKS1flop1R3I1FpvbD/TBEHY53G7zZKXZwa3RUVDW+B0mcFpu0k4vxfe86fiPX8qqqoK99JPyL3xtphIRFGBIJnza1OMaJcLKzsLKysTnZVJKD2D0P4FZjs7Cysrciw7EysrC52Vac7PzkJnZqIz0psUOM//3sNRsrmhvb167HYZOxotEgql1K3ACOAQ4GnACTwPHN1+pgmC0GFQygyES0szvaT8/tp4BsoIRitcMDozE/+kE1D/b3bi40qx5aO3sbIyG6TLWLNhM4MG9GxNaRJSec0VDQLIlsdD5TVXtNkzWkw0vUigBlztP7anpS2KycBhwOcAWusSpZQkmhcEoSE2W+3UqqGQmRFvD4LgYN7aG3ubt7p1bSvLm8R3+sn8X3AVc7e/QlGmRd8qG3O6ncZpuxMn2V3i801FU5NUV4PDwSsl7zHvq79TUr2ZgpwC5k6Yy7Qh7RPMbmn0KaBNUhgNoJRKoeGOgiC0Gw6HCYDn50PfAtPaCIWMaPh8kXQbzVN5zRVY9Qb87e23+Vc2vsWs0OsUZlloBYVZFrNCr/PKxrf2/ObR1OM+nxGC6BIMmpZYbi706mXcefvvzyveldzw2VyKq0vRaH4q/4mZ/5nJC1+/sOe2JKClLYqXlFKPArlKqRnAb4DH28UiQRBSE1ckZpGTY/Iw7UYQPNYddE96Pe0h8758EF+4btoMX9jPrZ//FdCEo1midZiQrs0UHbLi10NY4RBhK0Q4HDLZg7VFWGnCCsI2RdgGFpoQFmEsLMsipENYlkVZWRnpJeksLVxKTbhucN4b9DLn3Tnt0qpokVBorf+qlDoRqMDEKW7RWr/T5tYIgpD6ROfbjg+CV1aaPE5a12ZorYfv9JPbXRh8IR9F1aUUVhVTVFVCYXX0s4Rib0PXF8DOml1cuez3u/UchTIJKpUNe2S+FLuyY7PZYinvo4lFoznm7MpO0B8kw57RQCSiFJYnKYWHUsoOvK21PgEQcRAEoe2ID4J362ZEY9cu09oAIyZtOC9F0ApS4t1CYVUJRVXFFFZHPqtKKKouYZu/7shpj91N34zeFGTm82NlEdUhb4N79vB04+VxD2K3wK4UNmXHYXdid3uwpWVgd6fhcLqwudzYHWY2xtamDFrz2RoGjRzEqMdHUVxZ3OB4QU6SUnhorcNKKa9SKkdrXd4uVgiCICQKgu/aFQuCv7L5feZ99RAl3i30Tu/B7GFXMGX/ui0MrTVb/dsprCph2fa1/K+6iqLqEtNCqC6h1Lu1zlwsdmUnP70HfTN6c0LPo+ib0YuC9F70TetFQXpPurvyYpmiXyl6hxu+vAtf3Nt8mt3NzcOvYkDvQbVBeoej3Sddmj12Nje8cwO+UG1uqHRnOnMnJDeFhx/4Win1DhAbnqi1vqpdrBIEoXMTDYJnZUEgwCtfv8QNn82NVdLF3s1c++ntvFv4PjnOLIq8pRR6S9nk3YzfCtS5VQ93V/pm9GJU3mD65veiIKM3fTPzKcjMp1dGDxwOp+mNFT81af15qpViSu9fQ14e8z79KyVVpfTO6s3ssbOZcuiUvf71RJ85b+k8SipL2r3XU0uF4o3IIgiCsFcprdnBLZ/Oq/MmDxCwgrxa/C45rmz6Zvfh4O6HMiH7RApyCijI7ktNSZjxRx5DmjOtToW/J0wZNpUpw6bu0T3aiimHTuG0g0/DaXOSn53frs9qaTD7H0opF3BwZNc6rXWw/cwSBKGzUuYr4+Oij1latJSPCj/ih7IfGj1XoVh7xTcJj60pX0Namgz3agtaOjJ7PPAP4EfMxLJ9lVK/1lp/0H6mCYLQGfAGvXy66VOWFi7lo6KPWL11NRpNujOd0fmjOW/IeTy68lG2Vjecu7t3Vu8kWNz5aKnr6W/ARK31OgCl1MHAfOCI9jJMEITUJBAO8EXpFzFh+Lz0c4JWEKfNyRG9juDaMdcytmAsw3sOj83lvV/Gfg2Ct2mONGaPTZzaQ2hbWioUzqhIAGitv1NKdZ5pqQRBaDWWtlizdU1MGD4t/hRv0ItCMaTHEGYcPoOxBWMZlT/KxBMSUD94m8xAcmekpUKxQin1JPBcZHsasLJ9TBIEoSOjteaHsh/4qOgjlhYu5eOij9nl3wXAgV0O5JcDf8nYgrGM7jOavLS8Ft93yqFTRBiSREuF4lLgcuAqTIziA+Ch9jJKEISORUllSUwYlhYuZXOVGcXcO6s3Ew+YyNi+Yzmq71H0yuqVZEuF1tBSoXAA92mt74bYaG1305cIgpAKvPLNKw1cPuP7j2dZ0TKWFhlh2FC2AYA8Tx5HFxzN0X2PZmzBWPbP3T82YE3ouLRUKN4FTgCqIttpwP+Ao9rDKEEQ9g1e+eaVOkHk4spirnrrKrRJJG16JvUZzbQh0xhbMJaB3Qe2Oj2FsO/SUqHwaK2jIoHWukopld5ONgmC0M5orakOVrPdu501FWsoWl/ENu82tnu3s716O9t95nNF6QpCVqjutWiyXdk8O/nZOj2ThNSlpUJRrZQ6XGv9OYBSagTga+YaQdhtErk5OmsAc3e/i7AVZpd/V22FH1m2ebexw7ujzud273b8obiU2V/Wrua6c+ma3pXu6d0biESUykAlI/NHtlVRhX2clgrFLOD/lFIlmMmLegOtHseulPoDcAZgAVuB6ZFZ8xRwH3AK4I3s/7y1zxE6FoncHDe8cwNApxOLRN/Ftf+7lk+KPqEgt6COEESXHb4dWLrhREB2ZadberfYMiBvAN3Su9E9vTtd07vi3eTliOFH0C29G13Tu+Ky16b4bixLqQx061w0KRRKqZFAkdb6M6XUz4CLgSnAf4GNe/Dcv2itfx95xlXALcAlwMnAQZHlSODhyKeQgmit8Qa9lPnLKPOVcfvi2+sMqAIzP8C8pfNSVii01mzzbqOwvJCi8iIKKwop3FXIwm8XNphzIBAO8MJqM4NZujM9VtEX5BRweK/D64hBvBDkenKbjBus8a5hUI9BCY8lylIqA906H821KB7FBLEBxgC/A64EhgOPAWe35qFa64q4zQwiU6xiWhnPRqZd/UQplauU6qW1Lm3NczoC7259lwsfvzDprpY9dfmErTDlNeXs9O1kTcUain8ojglA7DN+3W+WQDjQ7L2LK4s5+qmjyc/Kp3dW74RLtjt7T4rfrlTWVMYEoLAiIgjlhRRVmM86LiCge3r3RiemUSi+u/I70p17J0QoA90EAGXq5EYOKvWl1npYZP3vwDat9W2R7VVa6+GtfrBSc4ELgHLgOK31NqXU68A8rfXSyDnvAjdqrVckuH4mMBOgR48eRyxYsKBVdkSnJ0xGT413t77Lvd/dS42urRTcNjezDprFhP0m7F07vr+XGqvWDpfNxbS+0/hZ1s+oCFVQEayIfVaGKhtsV4WqYj1h6mNXdrId2WQ7s8lyZJHtzI5tZzuyyXJmke3I5v7191MWLGtwfbo9nZF5I9kW2Ma2mm3sqNmBhdXgnO7u7rWLq3vdbXd3PHZPg3s39n08/ePTbKvZRnd3dy7sfyET9puAv9qPJ6PhPQJWgK3+rWyu2cxmv1lK/aWx9cpQZQNbe3p6xpZenl5m3d2THp4eeOwefrX8V2ytaZjbaD/3fjw/6vkWlaOlNFaujk4qlqt+mbTWKKVw2lrXoeC4445bqbUe0dx5zQnFamC41jqklPoWmBlNBKiUWq21HtzEtYuAngkOzdFa/zvuvJswvapuVUq9AfypnlDcoLVuchT4iBEj9IoVDbSkRZT5ytjh27HX3tDiacz/m+5M5/SDT4/MpxvGsiwsLMJxc+9a2sylGz0nbIXRWte5JnZe5JqwZY7Fzovcb5t3W0LfdiIynBnkpeWR58mr/YxfT8ujorCC4cOGk+fJo0taFzJdmS3qS1/fLw/GzXHXiXfVeYMNWSG2VG+hpLKEksoSSitLY+vRZZt3W4P753pym2yV9MzsyevfvZ7QhpuOuYmMHRnYetliLqJoy2Bz1eY6Iumyu8jPyqdfTj/65vSlIKfAfGYXUJBTQK4nt9nvo6XfRVsQnTUt1UjFctUvUyAc2KM040qpFglFc66n+cASpdR2TC+nDyM3PxDTEmiUyNSpLeGfmLkubgU2AX3jjvUBSlp4nw5HSWXionmDXpb8tCQ2V250/tzYp80Wm2NXKRWbT9embLhsrjrbdpsdG7Y619hU3e1/rv5noza+/IuXYyKQ68nF7Wh+nOWaqjUM6rn7/0Fb6uZw2BzkZ+WTn9X4f46aUA2bqzbXikdVCcUVxZRUlrCpYhOfFX/Grppdda5RKJRSDUTTF/Jxy/u3mI2vzHk9M3tSkFPA0QVHGwHILaAg2whCz8yee9xCFZePsC/RpFBoredG3up7Af/Ttc0PGyZW0SqUUgdprb+PbJ4OfBtZfw24Qim1ABPELk/V+MSKkhUopUjUosvPymf5jOV7zZYlPy1J2LLJz8pnTN8xe80OaLt8Pm6Hm365/eiX26/Rc7xBb4OWyN+W/a3R8+8cfCdjR46lT1afFgnmniK5jYR9hZbMmf1Jgn3f7eFz5ymlDsF0j/0J0+MJ4E1M19j1mO6xF+7hc/Y5tNY8//Xz/P6935PryaXKX0VA1wZ0k9GjpLP2bEl3pnNglwM5sMuBsX0LVi9oVDRH5I3ggLwD9qaJgrBPkJSx9lrrs7TWg7XWQ7XWP9daF0f2a6315VrrA7TWQxIFsTsy/pCf69+5ntmLZjO2YCwfTP+Aqw++mvysfBSK/Kz8dvFBN8eUQ6dw14l3Jd2OfYHZY2eT5qib6roziKYgNEVLB9wJe0hxRTEz/jODL7d8yVVHXsV1Y67DbrMzYb8JXHXqVck2T9wcEZqKDaz5bE2SrROE5CBCsRf4qPAjLnnjEgLhAE+e/iSTDpyUbJOEJhDRFIS6SJrHdkRrzaMrH+Xcf51Ll7QuvHHeGyISgiB0OKRF0U54g16u/d+1vLbuNU458BTumXQPma7MZJslCIKw24hQtAMbyzZy0WsX8d3O77hp7E1cPvJymbxFEIQOiwhFG7NowyKufOtKbMrG85Of59j+xybbJEEQhD1CYhRthKUt7ll2D9NfnU7f7L68Ne0tEQlBEFICaVG0AeX+cq7671Us2rCIsw49iz+f8GfSnGnNXygIgtABEKHYQ9ZtX8dvX/stRRVF/OG4P3Dh8AslHiEIQkohQrEH/Oe7/3DN29eQ4czgpbNf4sg+MseSIAiphwhFKwhZIeYtncfDKx7m8F6H89hpj9Erq1eyzRIEQWgXRCh2k52+nVz6xqUsLVzK+UPP5/bxt++VTKKCIAjJQoRiN/hqy1dc9NpFbPdu528T/8Y5g89JtkmCIAjtjnSPbSEvrnmRMxeciUazcOpCEQlBEDoN0qJohkA4wK2Lb+XZL5/l6L5H8/CpD9M1vWuyzRKETkX96Xvrk6inodYaf8if8H6KlvdMbKoXY3TisehUuPETkdXfF5suV5t1pRSxGXRV7KLYttba2Bl3zLIsqgJVde6T5mn/rvgiFE2wuWozM/8zk5WlK7nkiEu46ZibcNjkKxOEtiI2p7tVO7+7pa0GlahN2XDanLjsLpx2Z6yiT1RBR7EpGxnOjNi21rrO3ObNodEJ71v/GfU/o1PqJjoGtcITLYNSqs56/WPRbaUUJY6S2ORZ9c9tT6TWa4Tlxcu5+PWLqayp5KFTH+KMQ85ItkmC0GGIVv5hHY61BoAGb9AO5cBus+NxeHDYHLjsDed8j84Nv7t8Y/uGHpk92qZA+xB2m32vP1OEoh5aa55Z9Qy3LbmNPtl9mH/WfH7W7WfJNksQko7W2giArvv2n8h94rA5cNpNC8Bld+GwOXDYHHUqf5uyyeDUDoIIRRy+oI/Z787m5bUvM2H/CTxw8gPkeHKSbZYg7HW01gStIMFw0LhrtHF1RCv8NEcaTrsTp80Zq/xtyiYCkKKIUEQoKi/iov9cxOqtq7lm9DVcPebqmE9REFKdQDhAyAphWRYajd1mJ82RRo47B7fDHWsVCJ2TTvvLv/D1C8x5dw6F5YV0SeuCN+jFaXfyzJnPcOKAE5NtniC0C1prQlaIoBUkbIVRSmFpC7uyk5NmRMFpc+KwOaRVIMTolELxwtcvMPM/M/EGvQDs8O1AobjuqOtEJISUImSFCIaDsaCyUgqPw0OeJw+Pw4PT7qTEXkLfnL7JNlXYh+mUQjHn3TkxkYii0Tz1xVNcMuKSJFklCHtGVBRCVijW/95td5PjziHNWRtTkJaCsLt0SqEoLC9MuL+ksmQvWyIIrSNshQmEA4StsOltpMFld5HtzjaiYHPitDslzia0CZ1SKApyCvip/KcG+3tn9U6CNYLQNGErHIspWNpCoXDanWS6Mkl3pscGoYkoCO1FpxSKuRPm1olRAKQ50pg9dnYSrRKEuqIQHUnstDlJd6YbUXC4cNqcSRl0JXReOqVQTBsyDSDW66lXVi9uGnsTUw6dkmTLhM5EvPtIY/L6OOwOMpwZpDnSRBSEfYZOKRRgxGLakGmU+crY4dtBujM92SYJKUys91FcTCHefRQNNIsoCPsinVYohH2DqHslmh4iPhFbdLRvR/O9x/c+iuK2u8lyZxlRkECz0MEQoRB2G0tbsQo+fj1+X3wq5DoplOunT47kBYpm24ymhAAzWjg6Yhji7oO5R1RElFKx1BF7M31EdPBayAqZpHeR8rntbul9JKQUIhQdkPj89i1Zr39Ng+34pG467pPE6zZbbU4fu7LjsDtilbTD5uAn20/0yuwVq/zj0y4nWm9JeeOT0EUT04WtMCErFBOTaIUdtsJ10lBHnxF9ZnxLpaUVuNbmO/UFfQ1EIcedg8fpEVEQUhYRin2AYDiIP+RvMElJY+tKRSpbavPbx+e83931+jnv4z+jx+PXm8Ou7GS5s/boO4kn2mKw0zL/fR1BiZvnoL6o+MP+OpPgxFo61H7H0TQX0f25ntzYiGYZvCZ0FkQo9gF8IR99svvgsrsancyk/kQmQuPUaSk0oy3xrZX49NmhcAiNjo1RcNqcFNuLZXZDoVMiQpFkLG3RNa0rma7MZJvSKYlvrThxJtscQdgnEWdqEgmGgygUXdK6JNsUQRCERhGhSBLRwKj0nRcEYV9HhCJJVAeq6ZreVWIOgiDs8yRVKJRS1ymltFKqW2RbKaXuV0qtV0p9pZQ6PJn2tReBcACHzSGBUUEQOgRJEwqlVF/gRCA+5/fJwEGRZSbwcBJMa1e01viDfnpl9ZL+9oIgdAiSWVPdA9xA7XAugDOAZ7XhEyBXKdUrKda1E9WBarqldyPNmZZsUwRBEFpEUrrHKqVOB4q11l/W89HnA0Vx25si+0oT3GMmptVBjx49WLx4catsCWszundvvN1HR0OX2GsnSKqqqmq17fsqqVgmkHJ1NFKxXMkqU7sJhVJqEdAzwaE5wO+AiYkuS7BPJ9iH1vox4DGAESNG6PHjx7fKzr2VPVZrTWVNJf3z+uNxeGL7Fy9eTGtt31dJxTKBlKujkYrlSlaZ2k0otNYnJNqvlBoC7A9EWxN9gM+VUqMwLYj4Wd77ACkxP6k36KVberc6IiEIgtAR2OsxCq3111rr/bTW/bXW/THicLjWejPwGnBBpPfTaKBca93A7dTRiPZy6pIuA+sEQeh47GspPN4ETgHWA17gwuSas+dorakJ1dAvt5/0chIEoUOSdKGItCqi6xq4PHnWtD3VwWq6pnUVl5MgCB0WecVtR2pCNbhsLnE5CYLQoRGhaCe01tSEa+iZ1VNcToIgdGikBmsnqoPV7Jexn7icBEHo8IhQtANRl1OuJzfZpgiCIOwxIhRtTNTlJLmcBEFIFaQma2OqAlXsl7Efboc72aYIgiC0CSIUbUhNqAa33S0uJ0EQUoqkj6NoL4LBIJs2bcLv9zd5nqUtwjqMn6bPaw6NRmuNw+Zg3eZ1Lb4uJyeHb775Zo+eva+RSmXyeDz06dMHp1Pm0xY6LykrFJs2bSIrK4v+/fs3OYtcyAq1SfZYy7Jw2B04bLv3lVZWVpKVlbVHz97XSJUyaa3ZsWMHmzZtYv/990+2OYKQNFLW9eT3++nade9MNaq1RimFXcnc16mEUoquXbs22yoVhFQnZYUC2GvzUWutcdqdMv91CiK/qSCkuFDsDaIuJ+kKKwhCqiK1WwTbP+fjHHAQTqcH54CDsP1zfrPXNOVy2rFjB8OHD2f48OH07NmT/Pz82HYgEGiRTRdeeCHr1jUdGP/73//OCy+80KL7CYIgtIaUDWbvDrb5C7BfcjnK6zU7CguxX3IZANZ55zZ6ndYal8OV0D3RtWtXVq1aBcBtt91GZmYm1113XYPrLctq9P5PP/10s7Zffvm+mWxXa9MLzGaTdxFB6Oh0jv/Fs2bB+PEJF/vxE3DOuKRWJCIorxf7jItxHH9iwsV29TWtcjmtX7+ewYMHc8kll3D44YezefNmZs6cyYgRIxg0aBB33HFH7NyxY8eyatUqQqEQubm5zJ49m2HDhjFmzBi2bt0KwM0338y9994bO3/27NmMGjWKQw45hI8//hiA6upqzjrrLIYNG8a5557LiBEjYiIWz/XXX8/AgQMZOnQoN954IwCbN2/mjDPOYOjQoQwbNoxPP/0UgLvuuovBgwczePBgHnjggTplmzVrFocffjilpaW89dZbjBkzhsMPP5ypU6dSXV29W9+XIAjJp3MIRXPU1OzefjTQ+l5Oa9eu5be//S1ffPEFvXv3Zt68eaxYsYIvv/ySd955h7Vr1za4pry8nGOPPZYvv/ySMWPG8NRTTyW2TGuWL1/OX/7yl5joPPDAA/Ts2ZMvv/yS2bNn88UXXzS4bsuWLbz55pusWbOGr776iptuugkwLZYTTzyRr776ipUrV3LooYeyfPlyXnjhBZYvX86yZct46KGH+Oqrr2JlO//88/niiy9wOp3MmzePd999l88//5yhQ4dy3333teo7EwQheXQO11PkjTsRYSuEbf8BqMKihgcLCgi9906D3Za2cNkTu5xawgEHHMDIkSNj2/Pnz+fJJ58kFApRUlLC2rVrGThwYJ1r0tLSOPnkkwE44ogj+PDDDxPee8qUKbFzfvzxRwCWLl0aayEMGzaMQYMGNbiuS5cu2Gw2ZsyYwamnnsppp50GmMncFyxYAIDD4SA7O5sPP/yQs846i/T0dADOPPNMli5dysSJEznggAM44ogjAPj4449Zu3YtRx11FACBQICxY8fu/hcmCEJS6RxC0QyhP96BMz5GAej0dMJ/vKPBuW3RyykjIyO2vn79eu677z6WL19Obm4uv/rVrxL223e5XLF1u91OKBRKeG+3293gHDNxYNM4nU5WrFjBO++8w4IFC3j44Yf53//+BzTsItrU/eLLprVm0qRJPPfcc80+XxCEfRdxPQHWuecQfuQhdEEBWil0QQHhRx5qEMi2tIVN2dp0YF10FHN2djalpaW8/fbbbXbvKGPHjuWll14C4Ouvv07o2qqsrKSiooLTTjuNe+65J+aeOu6443jkkUcACIfDVFRUMG7cOBYuXIjP56Oqqop///vfHHPMMQ3uedRRR7FkyRI2bNgAmFjJ999/3+blEwShfZEWRQTrvHOb7OEEgDbul7YchDV8+HAGDhzI4MGDGTBgAEcffXSb3TvKlVdeyQUXXMDQoUM5/PDDGTx4MDk5OXXOKS8vZ8qUKdTU1GBZFnfffTcADz74IDNmzODRRx/F4XDw6KOPMmrUKM4999yY++zSSy9lyJAhrF+/vs49e/TowZNPPsnUqVNjXYLvvPNODjrooDYvoyAI7YdqiVtiX2fEiBF6xYoVdfZ98803HHrooc1e29JcT2ErjNPu3O1cTs2xN/IihUIhQqEQHo+H77//nokTJ/L999/jcLTPe0Kq5HqKEv1bWrx4MePHj0+2OW2OlKvj0NZlUkqt1FqPaO48aVG0AEtb2JW9w+ZyqqqqYsKECYRCIbTWsdaBIAhCS5DaoiW0g8tpb5Kbm8vKlSuTbYYgCB0UCWY3Q9gKSy4nQRA6NVL7NUFHdzkJgiC0BSIUjaHN4rB3XJeTIAhCWyBC0QiWtnDaneJyEgSh0yO1YIT5q+dz0AMH4fmjhwPvP5AX1764xyKxefNmzjnnHA444AAGDhzIKaecwnfffddGFrct/fv3Z/v27QCxlBv1mT59Oi+//HKT93nmmWcoLS2NbV900UUJB/gJgtBxEKEAFqxewGVvXEZheSEaTVFFEZe9cRn/XP3PVt9Ta83kyZMZP348P/zwA2vXruXOO+9ky5Ytdc4Lh8N7an6bE8062xrqC8UTTzzRIG/VvkBjKVAEQWhIpxCKWf+dxfhnxidcJjw7gUtevwRvsG6acW/Qy2///dtGr5v131lNPvP999/H6XRyySWXxPYNHz6cY445hsWLF3Pcccdx3nnnMXr0aADuvvvuWNruaNrw6upqTj31VIYNG8bgwYN58cUXAZg9e3YsHXj9OS4AHn74YW644YbY9jPPPMOVV14JmAR+RxxxBIMGDeKxxx5LaHtmZiZgxO6KK65g4MCBnHrqqbHU5gB33HEHI0eOZPDgwcycOROtNS+//DIrVqzgoosuYvjw4fh8PsaPH090MOT8+fMZMmQIgwcPjiUpjD5vzpw5DBs2jNGjRzcQU4AlS5bEJn467LDDqKysBEy68yFDhjBs2DBmz54NwKpVqxg9ergzb8sAAA9PSURBVDRDhw5l8uTJlJWVATB+/Hh+97vfceyxx3Lfffexbds2zjrrLEaOHMnIkSP56KOPGv9BBaETI+MogJpw4nTije1vCatXr45lUU3E8uXLWb16Nd26dWPlypU8/fTTfPrpp2itOfLIIzn22GPZsGEDvXv35o033gBMmo2dO3eycOFCvv32W5RS7Nq1q8G9zz77bMaMGcNdd90FwIsvvsicOXMAeOqpp+jSpQs+n4+RI0dy1lln0bVr14Q2Lly4kHXr1vH111+zZcsWBg4cyG9+8xsArrjiCm655RYAzj//fF5//XXOPvtsHnzwQW6//XaOPfbYOvcqKSnhxhtvZOXKleTl5TFx4kReffVVzjzzTKqrqxk9ejRz587lhhtu4PHHH+fmm2+uc/1f//pX/v73v3P00UdTVVWFx+Phrbfe4tVXX+XTTz8lPT2dnTt3AnDBBRfwwAMPcOyxx3LLLbdw++23x8R3165dLFmyBIDzzjuPq6++mrFjx1JYWMhJJ53EN99808SvKgidk04hFPdOajzNeMgKMeC+ARRVNEwz3i+nH4unL24Xm0aNGsX+++9PZWUlS5cuZfLkybHMq1OmTOHDDz9k0qRJXHfdddx4442cdtppHHPMMbFUHBdddFGddODxdO/enQEDBvDJJ59w0EEHsW7dulgOqfvvv5+FCxcCUFRUxPfff9+oUHzwwQece+652O12evfuzfHHHx879v7773PXXXfh9XrZuXMngwYN4uc//3mj5f3ss88YP3483bt3B2DatGl88MEHnHnmmbhcrlg5jjjiCN55p2Fq96OPPpprrrmGadOmMWXKFPr06cOiRYu48MILY+nOu3TpQnl5Obt27YoJ1a9//Wt+8YtfxO4zderU2PqiRYvqxE8qKipSLv2IILQFncL11Bx3HHcHaY60OvvSnenMnTC31fccNGhQk6Oh66fjTsTBBx/MypUrGTJkCDfddBN33HEHDoeD5cuXc9ZZZ/Hqq68yadIkwuFwzC0TfcufOnUqL730Ev/617+YPHkySikWL17MokWLWLZsGV9++SWHHXZYwpTm8STqGuz3+7nssst4+eWX+frrr5kxY0az92kqp5jT6Yw9p7EU6rNnz+aJJ57A5/MxevRovv3229ic5btD/PduWRbLli1j1apVrFq1iuLiYhEJQUiACAXwy0G/5OHTHqZfTj8Uin45/Xjs548xbci0Vt/z+OOPp6amhscffzy277PPPou5PeIZN24cr776Kl6vl+rqahYuXMgxxxxDSUkJ6enp/OpXv+K6667j888/p6qqivLyck455RTuvfdeVq1ahd1uj1V20VntpkyZwquvvsr8+fNjb9Hl5eXk5eWRnp7Ot99+yyeffNJkGcaNG8eCBQsIh8OUlpby/vvvA8REoVu3blRVVdXpCZWVlUVVVVWDex155JEsWbKE7du3Ew6HmT9/fgP3VFP88MMPDBkyhBtvvJERI0bw7bffMnHiRJ566im8kXlEdu7cSU5ODnl5ebGJnZ577rlGnzNx4kQefPDB2Hai6WEFQegkrqfmsCkbFwy9gF8P+3Wb3VMpxcKFC5k1axbz5s3D4/HQv39/7r33XoqLi+uce/jhhzN9+nRGjRoFmC6lhx12GG+//TbXX389NpsNp9PJww8/TGVlJWeccQZ+vx+tNffcc0/C5+fl5TFw4EDWrl0bu++kSZN45JFHGDp0KIccckgskN4YkydP5r333mPIkCEcfPDBsQo3NzeXGTNmMGTIEPr3719ntr7p06cza9Ys5syZw7Jly2L7e/XqxZ/+9CeOO+44tNaccsopnHHGGS3+Pu+9917ef/997HY7AwcO5OSTT8btdrNq1SpGjBiBy+XilFNO4c477+Qf//gHl1xyCV6vlwEDBvD0008nvOf999/P5ZdfztChQwmFQowbNy4294YgCLV0+jTjYct0T7XbkpOmIxV94qlWJkkz3jFJxXJJmvEkkSyBEARB6CgkJUahlLpNKVWslFoVWU6JO3aTUmq9UmqdUuqkZNgnCIIg1JLMFsU9Wuu/xu9QSg0EzgEGAb2BRUqpg7XWrRq+3JpeMYIQTyq4ZgVhT9nXej2dASz4/+2df4wV1RXHP9/Kj7WLaKG6JWoqVtKCokiBGEurqT+itqk1klZDqlFSrZUG+xtrYjDYFG392RIp1h+orYUirYTEpv7ClmpRQIQFtWKBqEVQLCoEqMLpH/c8dvr2vcfuZpd58zif5OXduXNn3vnOmZ2z987MPWa208zWAmuAMV3ZUVNTE5s3b44/9KDLmBmbN2+mqakpb1OCIFfy7FFMlHQRsAT4vpn9BzgcyD6z+brXtUPSZcBlAC0tLSxcuLB8Pc3Nzbz2WvsX6eqJRuz1NJKmXbt2sW3bNtavX8/WrVvbnWeNQOgqDnlp6rFAIekx4BMVVl0D3AFMJWV9mArcBFwKVLq6VOwSmNlMYCakp56K+nRDPJlRHEJXsWhEXXlp6rFAYWand6SdpDuBBb74OnBkZvURwL+72bQgCIKgE+T11NOgzOJ5QKuX5wMXSOoraTAwBHh2X9sXBEEQtJHXPYobJY0gDSutAy4HMLNVkuYAq4EPgSu7+sRTEARB0D00xJvZkt4C1udtRxf5OPB23kZ0M42oCUJX0WhEXd2t6ZNmdujeGjVEoCgykpZ05BX6ItGImiB0FY1G1JWXpnp7jyIIgiCoMyJQBEEQBDWJQJE/lRNXF5tG1AShq2g0oq5cNMU9iiAIgqAm0aMIgiAIahKBIgiCIKhJBIoeRNLdkjZJas3UFT4Xh6QjJT0p6UVJqyRN8voBkh6V9Ip/f8zrJel217ZC0sh8FbSnhqZC+0tSk6RnJb3guq7z+sGSFruvZkvq4/V9fXmNrz8qT/urUUPXvZLWZvw1wuvr/hzMIukASc9LWuDL+frLzOLTQx/gC8BIoDVTNwX4QYW2w4AXgL7AYOBV4IC8NVTRNQgY6eWDgH+6/TcCk71+MnCDl88BHiFN+ngSsDhvDZ3QVGh/+THv5+XewGL3wRzgAq+fAVzh5W8DM7x8ATA7bw2d1HUvMK5C+7o/B8vs/R7wO2CBL+fqr+hR9CBm9lfgnQ4277ZcHD2NmW0ws2Vefh94kTQd/LnALG82C/iql88F7rPEP4BDyub7yp0amqpRCH/5Md/qi739Y8AXgbleX+6rkg/nAqepDueMr6GrGnV/DpaQdATwJeA3vixy9lcEinyY6N3fu0vDM6SLUjZ5RtVcHPWEd3VPJP1H12JmGyBdeIHDvFmhtJVpgoL7y4cxlgObgEdJvZ8tZvahN8navkeXr38XGLhvLe4Y5brMrOSvn7q/bpHU1+sK4y/gVuBHwG5fHkjO/opAse+5A/gUMALYQMrFAZ3IxVEvSOoHPARcZWbv1Wpaoa4utVXQVHh/mdkuMxtBmrZ/DDC0UjP/LqwuSccBVwOfAUYDA4Afe/NC6JL0ZWCTmS3NVldouk/9FYFiH2NmG/0E3w3cSdtwRaFycUjqTbqg/tbM5nn1xlJ33r83eX0htFXS1Cj+AjCzLcBC0hj9IZJKs0dnbd+jy9cfTMeHT3Mho+ssH0I0M9sJ3EPx/PU54CuS1gG/Jw053UrO/opAsY9RA+Ti8DHQu4AXzezmzKr5wMVevhh4OFN/kT95chLwbmmIql6opqno/pJ0qKRDvHwgcDrp/suTwDhvVu6rkg/HAU+Y3ymtJ6roeinzj4pI4/hZf9X1OQhgZleb2RFmdhTp5vQTZjaevP2V1139/eEDPEgarviAFPknAPcDK4EV7uRBmfbXkMaPXwbOztv+GrrGkrq3K4Dl/jmHNDb6OPCKfw/w9gKmu7aVwKi8NXRCU6H9BRwPPO/2twLXev3RpMC2BvgD0Nfrm3x5ja8/Om8NndT1hPurFXiAtiej6v4crKDxVNqeesrVXzGFRxAEQVCTGHoKgiAIahKBIgiCIKhJBIogCIKgJhEogiAIgppEoAiCIAhqEoEiKASSBmZmBH2zbEbXPh3cxz2SPr2XNldKGt89VtcHkhaVZlENgq4Qj8cGhUPSFGCrmf2irF6kc3p3xQ33UyQtAiaa2fK8bQmKSfQogkIj6RhJrZJmAMuAQZJmSlrieQquzbRdJGmEpF6Stkia5vkMnpF0mLe5XtJVmfbTlPIevCzpZK9vlvSQb/ug/1a7/9gljZb0lKSlkh6R1CKpty+P9TY/V1suheskPVfSU5oF1O24WdLfJK2WNErSH5VyE0zJHIdVku6XtFLSHH9judyms13vMqU8Bs0ZO1YrTaZ3Q7c6KSg8ESiCRmAYcJeZnWhmb5ByYowCTgDOkDSswjYHA0+Z2QnAM8ClVfYtMxsD/BAoBZ3vAG/6ttNIM83+/0Zp1tLbgPPN7LOkt4SnmtkHwCXATElnkubyud43u83MRgPD3b6zMrvcbmafJ00z8ifgW97ustJUFn4cppvZcGAHcHmZTYeR8oScZmYjSW81T5LUQnoL/VgzOx74WZVjEeynRKAIGoFXzey5zPKFkpaRehhDSRfQcrab2SNeXgocVWXf8yq0GUuasA0zewFYVWG7ocCxwGNKU2FPxidvM7MVvv3DwCUePCDlEniWlBDpFN++xHz/XgmstDRZ4Q5gHWmSOIC1lnItQApMY8tsOpl0LJ52m8a7pndIU1rfKek8YFuVYxHsp/Tae5MgqHv2XNgkDQEmAWPMbIukB0jz4ZTz30x5F9X/FnZWaNORxDACVngvoBLHkXIHlIa8Pgr8ipRl7w1J15fZXbJjd6ZcWi7ZVX7DsXxZwJ/N7BvtjJVGAWeQJqK7AjizurRgfyN6FEGj0R94H3jPZxLtiVzWi4CvAUgaTuUey2rgcEljvF0fScd6+etAP9Kkb9Ml9QcOJF3035Z0EHB+F+waLGm0ly90O7M8DZwi6Wi3o1nSEP+9/ma2APguFYbSgv2b6FEEjcYy0kW6FfgX8Pce+I1fAvdJWuG/10rqHezBzHZKGgfc7hfiXsBNkt4i3ZM41XsOvwZuMbMJkmb5vtbTll2vM6wCvinpLuAlYGaZTRslTQBmZx4p/gmwHZjn91U+QsrXHAR7iMdjg6CTKCWI6WVmO3yo6y/AEGtLVZmHTccAcy1lfAuCbiV6FEHQefoBj3vAEHB5nkEiCHqa6FEEQRAENYmb2UEQBEFNIlAEQRAENYlAEQRBENQkAkUQBEFQkwgUQRAEQU3+BxeUztJuUk7zAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html\n",
"title = \"Learning Curves\"\n",
"\n",
"# Create the CV iterator\n",
"cv_iterator = KFold(n_splits=5, shuffle=True, random_state=10)\n",
"llr = Lasso(alpha=0.5)\n",
"\n",
"plot_learning_curve(llr, title, X, y, cv=cv_iterator, n_jobs=4)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of coefficients. The ridge coefficients minimize a penalized residual sum of squares,\n",
" \n",
"\n",
"$$ Loss = ||y - Xw||^2_2 + \\alpha * ||w||^2_2$$\n",
"\n",
"Here, \n",
"α\n",
"≥\n",
"0\n",
" is a complexity parameter that controls the amount of shrinkage: the larger the value of \n",
"α\n",
", the greater the amount of shrinkage and thus the coefficients become more robust to collinearity."
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XeYVOX58PHvfaZtp8rCArIrilIElGJUJDQNxo4xaFDUaIjGGP0lUbGlikHim2g0JhqjYESNBUsixlBVUCOogBQLilKX7pbZMuU87x9nZpndne0zO7vL/bmYa2ZOfc4we+55uhhjUEoppZrDSnUClFJKtV8aRJRSSjWbBhGllFLNpkFEKaVUs2kQUUop1WwaRJRSSjWbBhGlWkhEXhORy1OdDqVSQYOIardE5EsRmZTqdBhjzjTGzEvGsUUkR0TuE5GtIlIqIpsj77sn43xKNZUGEaXqISLuFJ7bCywBBgOTgRzgFGA/MLoZx0vZtaiOS4OI6pBE5GwRWSMiX4vI2yIyNGbdTBH5XERKRGSjiFwQs+4KEVkpIn8UkQPAryLLVojIvSJyUES2iMiZMfssF5GrY/avb9sCEXkzcu7FIvJnEXmyjsuYDhwJXGCM2WiMsY0xe4wxvzXGLIwcz4jI0THHnysid0VejxOR7SJyi4gUAo+LyCYROTtme7eI7BOREyPvvxH5vL4WkbUiMq7GZ/NFJO1bRGRa8/53VEeiQUR1OJEb4mPAD4FuwMPAKyLii2zyOXAa0An4NfCkiPSKOcRJwBdAD2BWzLJPgO7AHODvIiJ1JKG+bZ8C3ouk61fAZfVcyiTgP8aY0oavuk49ga5AP2AG8DRwScz6bwH7jDEfiEhv4FXgrsg+PwdeEJEjRCQT+BNwpjEmGydHtKYF6VIdhAYR1RH9AHjYGPM/Y0w4Ul9RCXwDwBjznDFmZ+SX/T+Bz6hePLTTGPOAMSZkjCmPLPvKGPM3Y0wYmAf0AnLrOH/cbUXkSGAU8AtjTMAYswJ4pZ7r6AbsatYncIgN/NIYUxm5lqeAc0UkI7L+e5FlAJcCC40xCyOfzSJgNfDtmGMNEZF0Y8wuY8yGFqZNdQAaRFRH1A/4WaRI5msR+RroC+QBiMj0mKKur4EhOLmGqG1xjlkYfWGMKYu8zKrj/HVtmwcciFlW17mi9uMEoJbYa4ypiEnPZmATcE4kkJzLoSDSD7ioxuc2BuhljPEDU4FrgF0i8qqIHNfCtKkOQIOI6oi2AbOMMZ1jHhnGmKdFpB/wN+DHQDdjTGdgPRBbNJWsoa13AV1jcgHgBLe6LAa+FSlKqksZEHu8njXWx7uWaJHWecDGSGAB53P7R43PLdMYMxvAGPO6MeZ0nMD2Mc7nqA5zGkRUe+cRkbSYhxvn5naNiJwkjkwROUtEsoFMnBvrXgARuRInJ5J0xpivcIqHfiUiXhE5GTinnl3+gXNjf0FEjhMRS0S6ichtIhItYloDfE9EXCIyGfhmI5LyDHAGcC2HciEAT+LkUL4VOV5apHK+j4jkisi5kYBWCZQC4aZcv+qYNIio9m4hUB7z+JUxZjVOvciDwEFgM3AFgDFmI/D/gHeA3cDxwMpWTO804GScoqq7gH/i3JRrMcZU4lSufwwsAopxKuW7A/+LbHYDTiD6OnLslxpKgDFmF871nxI5f3T5NpzcyW04QXYbcBPOfcICfgbsBA7gBKsfNfaiVcclOimVUqkjIv8EPjbG/DLVaVGqOTQnolQrEpFRItI/UjQ1GeeXf4O5B6XaKu3BqlTr6gkswGm+ux241hjzYWqTpFTzaXGWUkqpZtPiLKWUUs3W4YuzunfvbvLz81OdjCbz+/1kZtbXPaB90utqPzriNYFeV2O8//77+4wxRzRm2w4fRPLz81m9enWqk9Fky5cvZ9y4calORsLpdbUfHfGaQK+rMUTkq8Zuq8VZSimlmk2DiFJKqWbTIKKUUqrZNIgopZRqtnYXRERksoh8Is5c0zNTnR6llDqctasgIiIu4M/AmcAg4BIRGZTaVCml1OGrXQURnNnnNhtjvjDGBHCGtD4vxWlSSqnDVrsa9kREvgNMNsZcHXl/GXCSMebHNbabgTOfNLm5uSOeeeaZVk9rS5WWlpKVVdfEee2XXlf70RGvCfS6GmP8+PHvG2NGNmpjY0y7eQAXAY/GvL8MeKC+fUaMGGGa7MknjX3kkcYWMaZfP2OefLLpx2ihZcuWtfo5W4NeV/vREa/JGL2uxgBWm0bel9tbj/XtVJ9OtA/OJDmJM38+zJiBlEWmwf7qK5gxw3k9bVpCT6WUUu1de6sTWQUcIyIFIuIFLgZeSegZbr8dogEkqqwMbr0VysshEICwzgqqlFLQzsbOMsaEROTHwOuAC3jMGLMhoSfZujX+ubdtQ0aOhNxc6NHDee7VC3r3hj59oG9fZ7nHAy6X87AsEElo8pRSqi1pbzkRjDELjTEDjDH9jTGzEn6CI4+Mf96MdExuLuzeDYsXw5/+5OROpk+HCRPgmGOge3c4+mj4xjfgrLPg8svh5pvh/vvh+efh3Xdhxw4nZxPN0dTRsKHH4sWQn+8Eovx8p5gtVebPT31aNA1tNy3qsNauciKtYtYspw4kpkjLTvNROPPHpJ/3HbqkdXZu/MEg7N0L+/Y5z3v3OgFmzx7n+Ysv4J13oLi49jkyMpxcS/SRm+vkaPLynBzN2rUce++9UFnpbB+tlzEGvve9Q8epmctJRq4nUkdEKuuINA0OY8C24ckn4dprneLVVKVFqQgNIjVF/gjNbbfBtm2E++RR8suZmO+cz+7yr/Fl9yDD8jl/zP36OTmKUOjQczDoHMcY56ZeWlo90OzZU/2xfj0sWnQoYES4aqarrAyuvBJ+8xvnuJZ1qLgs+jre+6Ysi10n4hTJvfpq/DqiH/4Qli2rvn3NY0ePEXO8frt3O9cb3cYVudKa28e+v+uu+Gm4/nooLHQ+69iHbR/6P4i+j10fzQHW3Cf6Gmrv89hjdX8OCxdy3N698OCDzncgFHLOEQ7X/z722bbjb1tzfV3KyuC22zSIqFanQSSeadMIXfxdtny9hSyv0+5agIz0HHZW7KNf5354XJ6697dt54+/5nNswIneHKLbl5Q4OZi9e+H7349/3FDIKTaz7UOP6A2w5uvo+2Cw+rJ429W1rzG1b5xRfj8891z1bWveeGOPG1HQjP+OOh08CD//eSKPWD2ARXN2llUryFfx+2HpUjoZA2lph+rDYh9u96GAWdc2dT3c7trvH3ggflq2boVrroELL4Rx45z6OaWSTINIE7gtN0EJUlhaSO+c3lhSR5VS9Bd5Q6I32GigGTTIef7FL2D79trb5+XFv4HE3KRrHb+uzqTRnFJDxo+HnXFaUeflOTmRhkTPH3l+44sv+Ga/ftUDTbzgE7tsyhQnwNaUmwsvvnjoOmJzRNHXsYEgui5229jt6/tc6vscVqzgf599xrhjjz10rkQ8x15X7PNLL8G2bbXT4vPB44/Dww9D584webLz2Z15JnTAznWqbdAg0kTpnnRKA6XsL9vPEZmNmj2ybtHiGleNwqvZswlfdRWu2F+/GRkwZw4cdVTLzhlVX3CJdc89TpFNbI4kIwNmz4b+/Zt8HlNYCNGbbWP3mzPHqQOomYbf/x5Gjaq+X12BMd7ypmw7Z06turKq/5OCAqdeol+/+MdLtN/9Ln5aHngATjsNXnvNafzx6qvwzDPOunHj4IIL4Lzz4IgWfm+VitHuWme1BZmeTPaX7aeksiQ5J5g2jU9+/nPnpiTiPD/ySGLLu2N/idf8VR77uPRS59w103LZZY0vjol9QO1l8R4ez6HH9Ol1p6HmfnWlo766n5qPOv5P4qYhFXUQdaXl+993ijuvuw6efho++sipyzn3XFi1Cn7wAyfndNppcO+9TuOPdjTskWqbNCfSDCJCpjeTXSW78Ll9eF3ehJ9jz6RJDLrrroQft1mmTUt9ha2mobr60uJyQWam87j8cpg6Fb7+GlascBo1LF4MN93kPIYNg3POge98B44/vnHFsErF0G9MM7ksFx6Xh53FOwnb2oNdtVGW5RRn5eU5geL+++Htt2HhQrjxRqc+7q67YPhwGDAAfvITePPNQ60MlWqA5kRawOf24Q/42ePfQ6/sXqlOjlL1iwaUjAynUcK4cU6H2Y8/PpRDeeghp26lZ0+OHj0aiopg0iRnHx19QcWhQaSFMr2ZFFUWkeHJoFNap1QnR6nGsSxIT3ceRxzhNFC4/nqngcCSJbBkCb3+8x945RWnpdf48XD++c5IDF26OPvPn++MNbd1qzPSw6xZbae4L8GMMRgMtrHjPsJ2mJAdImSHsE0drSWTLGgH2VG8g/RnXyTnN7Nxbd8Jffsid9+d1P8XDSIJkOXNYlepUz+S5k5LdXKUahqR6gFlyBC4+mpWrlzJ2G3bqoIKL77o9HMZM8YZN+7559tdr3kTaUgQvdnXDAS2sauCQfQRNmHsOprRGwwigiUW2c//i+6/vRf3jl2Ee+dx8Bc/x3/R+a16bd5/PkfnG27Div6/bN2a9P8XDSIJYIlFujudHcU76Ne5H25LP1bVTsUEFLtTJ/jWt+Dii2H/fqcuZelSp9hr8eLa+0ZHEQgEIDvbeeTkVH94vfW3DGxGkZmZP9/prb9tG6ZvHyp+/Qsqp15YZzCoDFXyxYEvqh8jJhgIzrMlFm7LjUc8dfcJi0h/dgGdbry96ubt3r6DbjfchhuL8u9EAkmNPlN1PlclKs76UAipqIBAEKmoQAJBCASQykpyPttO11/dxdNHl3P7RNjaCY4sgllLyph2++0aRNo6j8tD0A6yu3Q3edl5iJYfq44gLc15dOvmNCU+91xnpIABA+I3Dz54sO4RF8AJItGWYxkZh17HPrKynAAU+zo7m3BmJuGcDEKZGQSyMihPd+N65d90v+VXWOUVAMjWbaT96HqKS/bin3IOFoKF4EbwgPPeGLL8AagMIGFnqCIJRUaUCIaQYDCyLAShIBJ0hqORUNhZHnnvLHP2z/ndfXFu3uVc8tPbcL+7yjlmIIgEgzGvA0gw5ASCyPLqryPpiWxLMITU1bEY6AHMPx5mnANlkQajX3V23vOvr0hW/lCDSAJleDIoqSzhYMVBuqZ3TXVylEockUMBpWtXZ6DQeNMm9Ojh9Fnx+52iLr/fyaHEe/b7nbHlSkudMdBKSzFlZVBaGvdm6Yo8vEAG0BkwwFPHU+PmXcH3/u8O7Fl/jAwvFHYCQCiEhMP0CoWQBPaPCQs8Phx+8m0oj4w081VnuPpc2LbMz5n/eQrb7cZ4PYQ9bmyPGxN52G43JtOD7XE5rz0Z2B43ttuFcTvLjduF8Xiw3a7Iche2y3VoH5cL43Kxp6yS35b/kzJv9Wsr88Lt33JpEGkvsrxZ7C7dTZo7jQxPRqqTo1TiicDdd9fuNZ+e7vSmnzjx0HA+8R62TShQQciECYWDBEyIinAlFXaAkB0CY5DKSqzSctyVQTwVlXjKAlgVFUh5OZa/DCkrR/xl/Gv5w/F/eWNz/rGnVHV4NW4XxmXh98BWvx9f93T8LptSj43fClPqsvG7Qs5rK4RfQvglSJkVotQE8EsAvwnip5IyE8RvKvHblfjtCipM/ObQFR649Qy4FRsIRB4JFo48IDLAX/zNtmYlrxuCBpEEi3ZE3FG8g/zO+fUP1KhUexUtX6+ndVZsJXUwHKQiVEFFqIJAOIxtXGAsxLixEFwIHlykESkGjo6dFhnBOFg1kGkIbENloJwd/l38NP2RuL+8rzoP7u66gbJwOWWhcvyhcsrCFRgayIHYkQeQ4UonU9LJcKeR4c4g051Olrszue500l1pZHoyyXSnk+nJ4N71j9R5yEfG/cGpb7FciGUhYoFYiCUIgkTqYcQSLHE5ReE110ffR+pqBMH5F91G2LJpC7/99LfsLdtbKw1HdkrekDwaRJLAbbkJWSF2luykb6e+DVbKKdUuRXrNx1ZeV5btpyJUQWWo0slVcKjS2iUu3JabDE9Gg3WG5cFydpTsYFvRNrYVb2NH8Q62FR96vdsfGZCzjl/elW7o0y2fTG8mGZ5MMtzpZHqzyPRkUFRYwtH9+5PhySDTk0GmN4sMb2Zk2wwyPZmke9Kb9Hf79FevsqNkR63lvbN7c9aJUxt9nJbwbffxi2/+gpsX3Ux5qLxqeYYng1kTEz9/X5QGkSRJc6fhD/jZ699LblZuqpOjVMIYYwiEA8xbO4/fvPEbdpbspFdWL3568k85/7jzcVkuvG4vaVJ3c3d/wM+24m1sL95e9dhWvI3tRdvZXrKdfWX7qm3vsTz0zu5N75zejM8fT59OfeiT04e73ryr1rbg3Lwfv2Be3HNvWLWBwUMGt+xDqGHmmJm1bt7p7nRmjpmZ0PM0ZMrAKQDMXjG76kfs3RPvZtrx2k+kXcrwZHCw/CDp7nRy0nJSnRylms02TtPY0kApxZXFvPTxS9yx7A4qQk6rqJ2lO7lz2Z343D6mDJxCcWXxoRxE0Ta2l2xne9H2qsBxsOJgteP7XD565/Smb05fBvcYTJ8cJ0j0zelLn5w+9MjsgcuqNVUbLnG1yZt3XnYeM8fMrFre2mmZMnAKpZWlHNX1qKR3OdAgkkTR+pFCfyE+tw+f25fqJCnVJNGgURooxRiD23Ljc/v447t/rAogUeWhcv7v9f/jjqV3UFRZVG1duju9KigM7zncCQ6d+tAnuw99O/Wle0b3ZhX7tsWbt4lp+RWv97qpOT1CjXqahtbXtY0xpur/JNrDvjVoEEkyl+XCY3nYUbKDfp36xf01pVRbEQgHKA+WU1RZRGW4kh3FO/C4PGR6MqvVY+wsiTNBF05P8CkDp1TlJKKBo2t616T0nTLGcN6x53HOgHMIm3DVzbU8WF51E40ui95obdumpLLESU/0PhtNWpz30TodY0xVhXZd2wJYNUZCtmqMc1vzc4hWjMeuF6pvUzPAxntviUWmJ7PqGBZWq9THahBpBT63j7JAGXv8e+iZ1VM7Iqo2I/rrtSxYRlFFEUE7iCUWXpfXGcrDlx13v7zsvDorku+a0PIpDGoORWIb2wkGVRNQmqqbr9ty47bcpLnTqlouRXufA7Wed7h20Dund9WNOvamHf3brO99Q9umyiZrU0rqXzWItJIMbwZFFUWkudPokt4l1clRh7GwHaYiVEFJZQklgRJsY+OyXPhcPtI8jRv7beaYmdzwnxuqFdc0VBdhjDOAYdiEq41ZVesXPeAWNy7LRZo7Dbflxuvy4rJcuMRV9avbZbma9UvbEossr04XnCgaRFpRli+LPf49pLnTSPekpzo56jASDAeriqnKg5HxnVyNa24bz/Cew7GNTY43h5JACXnZefz8lJ9z5tFn4g/4D5XHVz2ZqiDgdXmrAoPbclcLCNEgkepf9arxNIi0Ikss0txpTkfELvk6UKNKGmMMleHKqmKqQDiAIHjdXrJ8Lf8V/sTaJ3BbbpZevtTpdOfNrBYYosEhNkBof6mOSe9irczj8hCyQ+wq2UWfnD76i0sljG1sKkIVVS2qwnYYSyx8bh/Z7vh1G81RHizn2Q3P8u1jvk3X9K743D7ysvMSdnzVvmgQSYF0TzollSXsL9tP98zuqU6OaqeMMU4v8XAlRRVFVcVIsZXMyfDixy9SVFnElcOvJGSH6OrRwUYPZxpEUiTLm8W+8n2kudMSUrzQUdRs/161vIG28k1pa9+SdvrxzhmtMC6qcPpGxFY2R1sVRbeNrmvsc/R8NjHHjI5wK5FWSiJ4LA+Z3syk52yNMTy+5nEGdh/IqLxRlAZKtf/TYU6DSIqICJmeTHaW7CTfnY/X5U11kuKKtuQpDZRWdWSqa/rPeAHAUL3TU2W4ks0HNjc4U1y8Y9dsOx/7tub6WsepmbRm7lttXUyroqAdZLd/d53NP6tO24gmpOC0Tmpon1RYvXM1G/du5J5J91Q1d22r313VOjSIpJDLcuF2udlZvJMjOx/ZZioeA+EAFcGKqpY80SKS6IjEsTe4WHXd3GJvpNFZIOvbvj06XJqNzl0zlxxfDlMGTiFkh/C5fW3me6tSQ4NIirWFgRpjW/J8XfE1wXAwoS15aupIweNwste/l1c/e5Xpw6aT4cmgPFhOJ1+nVCdLpZgGkTYg05vJwYqDpLnT6JTWOn+U9XY4czeuw5k6vMz/aD5BO8jlwy8HnO+Q9ndSGkTaiCxvFoWlzkCNybqJx46LVB4sR5AWdThTh4+QHeLJdU8ytt9Y+nfpDzj1Q1ofojSItBHR9vw7i3fSr3NiZiGrOS5SyITAgNftrXNMJKXi+e/n/2VX6S5mTXAmN4rmXHXmTtXmasRE5FciskNE1kQe345Zd6uIbBaRT0TkW6lMZzJ4XV4MhsLSwmYfI2yH8Qf8FJYUsvnAZrYWbeVgxUE8Lg9Z3iyyfFn661E12dw1c+md3ZtJR00CnGFUoiPGqsNbW82J/NEYc2/sAhEZBFwMDAbygMUiMsAYk7wZ6FMg2hEx3ITL0mIqlUyf7f+MldtWMnPMzKqpDEJ2iAxPHXPTqsNKWw0i8ZwHPGOMqQS2iMhmYDTwTmqTlXhZ3iyC4SBlwbK4f6jRWeb8AT/FlcVVw3d7XB4tplIJN3fNXLwuL98b8r2qZQajnQwV0HaDyI9FZDqwGviZMeYg0Bt4N2ab7ZFltYjIDGAGQG5uLsuXL29yAgzOPNKpagMfKA/w1ptv4XV5q/pZxA6jjQEkMuFNO8psVPgr2LBqQ6qTkXAd8boq/BWsemcVz65/lrHdxlK4oZBCnKJW27bZ6Y4/MVVbV1pa2qx7QluXqutKSRARkcVAzzirbgf+AvwW5zb5W+D/Ad8n/q0y7hgZxphHgEcARo4cacaNG9fkNAbDQbZ8vSVlHcg2rNrAUcOPcobGtiwqQhUYY/C4PPhcvnZbTLVh1QYGjxqc6mQkXEe8rg2rNrDKs4qycBk3TLyBwb2c6wuGgwAJawDS2pYvX05z7gltXaquKyVBxBgzqTHbicjfgH9H3m4H+sas7gO0z59CjZTuSaciVIEYOSx6Q6u2xRjDvLXzGJo7lBN6nlC1PGgH6ZKmE6spR1tsndUr5u0FwPrI61eAi0XEJyIFwDHAe62dvtaW5k7TZpQqJdYVrePT/Z9yxbArquV8bdvWDqmqSlusE5kjIsNxiqq+BH4IYIzZICLPAhuBEHBdR2uZpVRb8squV+ic1plzjz231jptJq6i2lwQMcZcVs+6WcCsVkyOUoelXSW7WLlvJTNGzKg2tIltbCzL0tyxqtLmirOUUqk3/6P5GAzTh02vtjwQDmgnQ1WNBhGlVDWBcID5H81nVJdRtVpghcIhDSKqGg0iSqlqXtv8Gnv8ezg3r3ZdCOKMvaZUlAYRpVQ1c9fMJb9TPiO7jIy7XivVVSwNIkqpKhv3buS9He9x2bDLao3WEAwHSXOn6UyGqhr9NiilqsxdM5c0VxpTB0+ttS5o68i9qjYNIkopAIoqiliwaQHnH3c+XdJr90jXmQxVPBpElFIAPLfxOcpD5Vwx/Iq46wXR+hBViwaROOZ/NJ+jHzia4x48jtF/G82CTQtSnSSlkso2NvPWzuPEXidyfO7xcde7LTduq831T1YppkGkhvkfzWfGv2awtWgrBsOOkh3cvOhmDSSqQ1uxdQVfHPyCK4ZdEXd9IBzQSahUXBpEarh9ye2UBcuqLSsPlTN7xewUpUip5Ju7Zi7d0rtx9oCz464PhXUmQxWfBpEathZtjbt8Z0mHHnVeHcZ2FO9g0ReLuOT4S+qcrVBnMlR10SBSw5Gdjoy7PC87r5VTolTreGLdEwBMHzo97npjDCKigy6quDSI1DBr4qxa2fZ0dzozx8xMUYqUSp6KUAVPffQUZxx1Br1z4s42TcgOaSdDVSf9VtQw7fhpPHLOI9VyJJcNvYwpA6ekMFVKJce/P/03B8oPcPnwy+vcJmgHdWZNVScNInFMO34am6/fzPpr19O/S3+WfbmMkB1KdbKUSri5a+bSv0t/TjvytDq3CdthnclQ1UmDSD08Lg+3jrmVzw58xrMbnk11cpRKqHW71/Fh4YdcPuzyatPfxqOdDFVdNIg0YPLRkxmZN5J73763VtNfpdqzuWvmkuHJ4KLBF9W5jW1sPJZHOxmqOmkQaYCIcMfYO9jt383fPvhbqpOjVEIcKD/Ayx+/zJSBU8jx5dS5nXYyVA3RINIIo/JGMbn/ZB5a9RD7y/anOjlKtdizG56lIlxRZw/1qFA4RKZXR+5VddMg0ki3nnYr5cFy7nv3vlQnRakWsY3NE2uf4KTeJzHwiIH1bmswWh+i6qVBpJGO7no0lxx/CU+se4ItB7ekOjlKNduyLcv4quirepv1RonoyL2qfhpEmuBnJ/8Mr8vLPSvvSXVSlGq2uWvnkpuZy5lHn1nvdsYY0t3pDbbcUoc3DSJN0COzBz8c8UP+9em/+HDXh6lOjlJN9uXXX7JsyzKmHT+twRyGwWh9iGqQBpEmumbkNXTP6M6st2ZhjEl1cpRqkifWPoHLcjFt6LRGba+dDFVDNIg0UZY3i//7xv/xzvZ3WLJlSaqTo1SjlQfL+ef6fzL56Mn0zOrZ8A5GOxmqhmkQaYZpx0+joHMBd791N2E7nOrkKNUoL3/yMl9Xft1gs15whjoREe1kqBqkQaQZosOhfLL/E57b+Fyqk6NUg4wxzF0zl2O7Hcs3+nyjwe2DdlBH7VWNot+SZvr2Md/mxF4n8vu3f095sDzVyVGqXh/s+oCP9nzE5cMbHicLnE6GGkRUY+i3pJlEhDtOu4PC0kIe/fDRVCdHqXrNXTuXLG8WFw68sNH7aNNe1RgaRFrgpD4ncUb/M/jze3/mQPmBVCdHqbj2le3j35/+m4sGXdSoeUGiMxkKGkRUwzSItNCtY27FH/TrcCiqzXp6/dMEwgEuH9ZwD3Vw6kO0aa9qLA0iLTSg2wAuGXIJT6x9gq++/irVyVGqmpAd4h9r/8GYI8dwTLdjGrVPMKwzGarGS0kQEZGLRGSDiNgiMrLGultFZLOIfCIi34pZPjmybLOItKkJz3968k9xWS7mrJyT6qQoVc3iLxazo2TrpV1kAAAgAElEQVRHo5r1RhmM5kRUo6UqJ7IemAK8GbtQRAYBFwODgcnAQyLiEhEX8GfgTGAQcElk2zahZ1ZPfjjih7z0yUusLVyb6uQoVWXumrnkZedxev/Tm7Sfx+VJUopUR5OSIGKM2WSM+STOqvOAZ4wxlcaYLcBmYHTksdkY84UxJgA8E9m2zbh25LV0Te/KXW/dpcOhqDZh84HNvLX1LS4demmjOw2G7TBuy62dDFWjtbVvSm/g3Zj32yPLALbVWH5SXQcRkRnADIDc3FyWL1/e5IQYDIFwoElt5S/Ju4Q/f/5n5v53LqO7jm7yOWNV+CvYsGpDi47RFul1tZ6HPn8It7gZERrR6LTZxsYlLrZaWyktLW3W305bp9eVWEkLIiKyGIg3QM/txpiX69otzjJD/BxTnT/3jTGPAI8AjBw50owbN67+xMYRDAfZ8vWWJlUwHhM+hlfnvsr83fOZfvp0XJaryeeN2rBqA4NHDW72/m2VXlfr8Af8LPnfEs459hzGnDqm0fuVVJbQO6c3Wd4sli9fTnP+dto6va7ESlpxljFmkjFmSJxHXQEEnBxG35j3fYCd9SxvU7wuL7eMuYVN+zbxwqYXUp0cdRhb8PECSgIljZp4Kpagk1CppmlrTXxfAS4WEZ+IFADHAO8Bq4BjRKRARLw4le+vpDCddTpnwDkMzx3OnJVzdDgUlRLGGOatmcfgIwYzstfIhneI2U9E8Fhaqa4ar9FBRETGiMiVkddHRG7yzSIiF4jIduBk4FUReR3AGLMBeBbYCPwHuM4YEzbGhIAfA68Dm4BnI9u2OSLCHWPvYFfpLh5f83iqk6MOQ+/teI9N+zZxxfArmjR0SdAO6kyGqskaFURE5JfALcCtkUUe4MnmntQY86Ixpo8xxmeMyTXGfCtm3SxjTH9jzLHGmNdili80xgyIrJvV3HO3hpP7nsykoybxwHsP6HAoqtXNXTuXTr5OXHDcBU3aLxgO6kyGqskamxO5ADgX8AMYY3YC2clKVEdw25jbKA2U8sB7D6Q6Keowsrt0Nws/W8jUIVNJ96Q3aV/b2NrJUDVZY4NIwDidHwyAiOjPlQYc2/1Yvjvou8xdM5dtRdsa3kGpBJj/0XxCdojpQ6c3eV8RrVRXTdfYIPKsiDwMdBaRHwCLgb8lL1kdw89O+RmWWDocSgexYNMCRv9tNH3+0IfRfxvNgk0LUp2kaoLhIE+ue5Lx+eMp6NK0KstoJ8OWNEtXh6dGBRFjzL3A88ALwLHAL4wxWk7TgLzsPK4+8WoWfLyA9XvWpzo5qgUWbFrAzYtuZkfJDgyGHSU7uHnRzW0qkPzn8/+w27+7yc16AQLhgA66qJqlwSASGbtqsTFmkTHmJmPMz40xi1ojcR3BdaOuo0taF+56865UJ0W1wOwVsykPVW+yXR4qZ/aK2SlKUW3z1syjb05fJuRPaPK+YRMmw5ORhFSpjq7BIGKMCQNlItKpFdLT4eT4crjxGzfy1ta3eOPLN1KdnGZp68U4yWKMYcPeDfzpf39iR8mOuNvsKNnBy5+8TEmwpJVTV93H+z7mne3vMH1Y80ZKMMZofYhqlsYOe1IBfCQii4i00AIwxvwkKanqYKYPm85jHz7GXW/dxWn9TmtXc1dHi3Giv8KjxTgAUwZOSWXSksIf8LNi6wqWbFnCki1LKCwtBMBjeQjawVrbC8KPXv0RFhYnbj2RCQUTmJA/gcE9Brfq//O8tfPwuXxcPOTiJu9rjMESSzsZqmZpbBB5NfJQzeB1ebnl1Fv40cIfsWDTAr4z6DupTlKj1VeM01GCyJaDW1iyZQlLtyzlne3vVNUPjO03lkkFkxiXP46V21ZWC6YA6e50Zk+aTX7nfJ5d+SzrA+uZs3IOc1bO4YiMIxiXP44JBRMY228sndM6Jy39JZUlvLDxBc499ly6pndt8v7ayVC1RKOCiDFmXmS4kQGRRZ8YY2r/LFN1OufYc/jr+39lzso5nD3g7HbRHt82dr3FODf99yaG9RzGsNxhHNv92HZTHBIIB3h3+7ss3bKUJVuW8MXBLwA4uuvRXDn8SiYUTGB079HVricaMGevmM3Okp3kZecxc8zMquXp+ekMHjWYvf69LP9qOcu2LGPR54t4buNzWGIxotcIxheMZ2LBRAYfMTihN+znNz6PP+jniuFXNGv/YDhIpwwtrVbN06ggIiLjgHnAlzgj7fYVkcuNMW/Wt586xBKLO067g+8+7/QduWbkNalOUr22HNzCTYtuqnO9z+Vj4eaFPLX+KcDJbQ3qPoihPYcyPHc4Q3OHcky3Y9rMvBSFpYUs3bKUpVuW8uZXb+IP+vG5fJzS9xSuHH4lEwsm0q9zv3qPMWXglAZzX0dkHsFFgy7iokEXEbJDfFj4Icu2LGPplqVVuZQemT0Ylz+O8fnjW5xLMcYwd+1cTuh5AsN7Dm/WMbSToWqJxv6F/z/gjOhEUiIyAHgaGJGshHVEpx55KhPyJ/Cn//2JqYOn0iW9S6qTVEvYDvP3D//OPSvvwWN5uGTIJbz08Uu1inHmnD6HC467gK1FW1m7ey3rdq9j7e61vLjpRZ5Y+wQAae40hvQYwrBcJ7cyrOcwbGO32nWsKVxTVbcRbWLdK6sXFwy8gIkFExlz5JiktkhyW25G5Y1iVN4obj71Zvb497D8y+Us+3IZr29+nWc3PItLXIzIG8H4/PFMKJjQ5FzKim0r2HxgM/dNvq9FaW0vuUjV9jQ2iHhiZyI0xnwqIloL1wy3nXYbp//jdB5870Hu/OadqU5ONZ/u/5Sf/fdnfLDrAyYdNYnZE2fTK7sXp/Q9pc5inH6d+9Gvcz/OPfZcwPlV+8XBL6qCytrCtTz10VP8/cO/A5DhymDYl05QGdpzKMNyh9GvU7+EFO98XfE1b3z5Bou3LGb5l8s5UH4ASyxG5o3k1jG3MrFgIsd1Py5lZf89Mnvw3cHf5buDv+vkUnZ9yNIvl7JsyzLuWXkP96y8h9zMXCeXUjCesUeOpVNa/cVM89bMo2t6V84ZcE6z0hS2w3hdXu1kqJqtsUFktYj8HfhH5P004P3kJKljG3jEQC4afBGPr3mc75/wfXrn9G54pyQLhoP8ZfVf+OO7fyTTk8mDZz7I+cedX3WzbUwxTpQlFkd3PZqjux5dtU/IDrH5wGbW7l7LsnXL2B7azmNrHiMQDgDQ2deZoT2HMjR3aFWuJS87r9rNfsGmBbUC2QXHXcDH+z6uym2s3rka29h0SevC+ILxTCqYxNh+Y9tkjs9tuRnVexSjeo/illNvYY9/D8u+XMayLct4bfNr/HPDP3GJi5F5IxlfMJ7x+eOr5VIWbFrArLdmUVhaSJY3i4WfLWxWQ4dAOEC2T4fBU80njZkPXER8wHXAGJw6kTeBh4wxlclNXsuNHDnSrF69usn7NWdmw8baUbKDsY+N5exjz+b+yffH3aa1Zspbv2c9P339p2zYu4FzBpzDXRPuontG96SdL3pdgXCAT/d/yprCNVW5lo/3fUzIDgHQPaN7VVDxB/w8se4JKkIVVcdxiYtsbzZfV34NwJAeQ5hYMJEJBRM4oecJrf7LOpH/XyE7xAe7Pqiqw9mw15n1IDczl/H548nwZPDU+qeqfR7RIsamBpLSQCl52Xlxv+c6A2D7ksjrEpH3jTGNmoymsTkRN3C/MeYPkRO4AF8z03fY653dm6tOvIqHVj3EjBEzGHxE60+rWhmq5L7/3cdDqx6iS1oXHj3nUc485sxWO7/X5WVIjyEM6TGkallFqIKNezdWBZV1hetY/uXyuPUoYROmIlzB70//PRMKJtAzK95MzO2T23IzuvdoRvcezcwxM9ldupvlXy5nyZYlLNy8kOLK4lr7NLfZtXYyVC3V2CCyBJgElEbepwP/BU5JRqIOB9eNuo75H83n7jfvZv6F81v13O/vfJ+fL/o5n+7/lIsGXcQvv/nLNlHkk+ZO48ReJ3JirxOrlvkDfo598FgMtXPMlaFKvnf891oziSmRm5XL1CFTmTpkKsFwkIL7C+J+HjtLmjZjtHYyVInQ2C61acaYaAAh8loH2mmBTmmduOGkG1j+1XLe/Kp1WkqXB8v59Ru/5rxnzqM0UMqTFzzJfZPvaxMBpC6Z3kzysvPirqtreUfmcXkS9nkEwgEyPBnayVC1SGODiF9Eqn4eishIQCcQb6HLh11O35y+zHprVtKbvr697W0mPTGJR95/hMuGXcbS6UsZXzA+qedMlJljZpLurj7BUro7nZljZqYoRamVqM8jZId05F7VYo0NIjcCz4nIWyLyJvAMzpznqgV8bh+3nHoL6/es56WPX0rKOUoqS5i5eCYXPXcRAM9d9By/m/i7dtUiZ8rAKcw5fQ69s3sjCL2zezerErmjSNTnofUhKhHqrRMRkVHANmPMKhE5DvghMAX4D7ClFdLX4Z133Hk8/P7DzFk5h7OOOQufO3HtFZZtWcbNi29mV8kuZoyYwc2n3NzkKVPbiqY0Mz4cJOrz0CCiWqqhnMjDQCDy+mTgNuDPwEHgkSSm67BhicVtp93GtuJtzFs7LyHHPFh+kBv/cyOXvngpmZ5MXr74ZX75zV+22wCiEi9kh/C4PNrJULVYQ0HEZYw5EHk9FXjEGPOCMeZO4OjkJu3wMbbfWMb1G8f9/7ufooqiFh3rtc9eY8ITE1iwaQE3nHQDr1/6OiPydHQaVV0wHNT6EJUQDQYREYkWeU0Elsasaxsj63UQt429jaKKIv686s/N2n9f2T5++O8fcvW/ruaIjCNYOG0hN596c0KLx1THoTMZqkRpKBA8DbwhIvtwWmO9BSAiRwMt+8msqhl8xGAuHHQhj37waJPmyDbG8NLHL3HnsjvxB/3ccuotXDvyWjwubfuv6qffEZUI9eZEjDGzgJ8Bc4Ex5tAYKRZwfXKTdvi5+RRnxsB73763UdvvKtnFFS9fwY9f+zEFXQp4/dLX+clJP9Gbg6qXdjJUidRgkZQx5t04yz5NTnIOb71zevP9E77PX1f/lYknTmQw8YdDMcbw9Pqn+c0bvyFoB/nlN3/JVSdcpZWkqlEC4YDOZKgSpv1M9n2Y+PHoH9PJ14lHtzwad/3Woq1c8sIl3LToJob0GMLiyxYzY8QMDSCq0YK2VqqrxNEg0sZ0TuvM9Sddz6qDq1ixdUXVctvYPPbhY0x8YiIfFn7I7EmzefaiZynoUpDC1Kp2yaANLlTCaAurNuiK4Vdw38r7uHTBpYTsED0ye5DhyWDL11uYkD+B2afPpnd26uchUe2X1oeoRNEgUgdLLDBO/UNrlx0v/Gwh5XY5IePMrbHbvxuAS4deyuyJs7UsWzVbyA7pTIYqobQ4qw4uy0Xn9M7VJv5pLbNXzK4KILGWbVmmAUS1SDAcJNObmepkqA5Eg0g9Ovk6Vc2015rqmheiqfNFKFVTyA5pJ0OVUBpE6uFz+0j3pFfNBd5adP4MlSwiooMuqoTSINKAbundqAy17lTyM8fMxGdVbz1zOM+foRLDNjaWWLgtrQpViZOSICIiF4nIBhGxIxNcRZfni0i5iKyJPP4as26EiHwkIptF5E/SSpUD6Z503JabsB1ujdMBzjDfNx5zo86foRIqGA7qTIYq4VL1k2Q9zrwkD8dZ97kxZnic5X8BZgDvAguBycBrSUthhCUWXdO7sq9sX6tWSE7sMZGfnPWTVjuf6viCdpCunq6pTobqYFKSEzHGbDLGfNLY7UWkF5BjjHknMn7XE8D5SUtgDdm+bAyGQ0OHKdX+GGO0k6FKuLZYOFogIh8CxcAdxpi3gN7A9phttkeWxSUiM3ByLeTm5rJ8+fIWJypkhwibsNN/pBVU+CvYsGpDq5yrNel1pY5t2+xy72r09qWlpQn522lr9LoSK2lBREQWAz3jrLrdGPNyHbvtAo40xuwXkRHASyIyGIhXiFtntsAY8wiRmRdHjhxpxo0b16S0x1MeLGdr0dZWm5t8w6oNDB4VfwDG9kyvKzVCdgjbtsnvkt/ofZYvX04i/nbaGr2uxEpaEDHGTGrGPpVAZeT1+yLyOTAAJ+fRJ2bTPkCrdppIc6fhc/kIhoM61Lpqd4LhIJ18nVKdDNUBtakmviJyhIi4Iq+PAo4BvjDG7AJKROQbkVZZ04G6cjPJShtd07umpAe7Ui0VskOke9JTnQzVAaWqie8FIrIdOBl4VURej6waC6wTkbXA88A1MXO8Xws8CmwGPqcVWmbVlOXLwhIL29itfWqlWkw7GapkSEnFujHmReDFOMtfAF6oY5/VwJAkJ61ellh0SevCwYqDOv6QajdsY+OyXFoMq5KiTRVntQc5aTmaE1HtSrSToVLJoEGkibwuL5mezFYfCkWp5grZITI9mnNWyaFBpBm6ZnRt9UEZlWoug3YyVMmjQaQZ0t3peCxPSoaJV6rJjFaqq+TRINIMIkK3jG5UBLW5r2rbQnYIn9vXaiMtqMOPfrOaKcubBaDjaak2LRgOan2ISioNIs2UyulzlWqssB3WToYqqTSItECqps9Vqim0PkQlkwaRFkjV9LlKNYZtbCzL0k6GKqk0iLRQKqbPVaoxAuGA1oeopNMg0kKpmD5XqcYI22ENIirpNIi0UHT6XK1gV22NweB1a32ISi4NIgmQ5c3CNrY291Vtjlaqq2TTIJIAHpeHbF+25kZUmxEMB/G5tJOhSj79hiVIl7QuBMPBVCdDKQCCdrCqQ6xSyaRBJEHS3Gn43D4NJKpNsG1bOxmqVqFBJEFExGnuG9bmvqpt8FjaP0QlnwaRBMryZSGITlqlUso2Nm7LrZ0MVavQIJJA0elztYJdpVIgHNCiLNVqNIgkWE5ajnY8VCkVCutMhqr1aBBJMJ0+V6WcoDMZqlajQSQJdPpclWpaH6JaiwaRJIhOn6vFWqq1BcNB0txp2slQtRr9piVBdPrc8mB5qpOiDjPayVC1Ng0iSZLpdSo2dTytjqct/5+G7TBp7rRUJ0MdRjSIJInbcuv0uR2MMYbSylL8QT/FFcVtdnQCHXRRtSZ3qhPQkXXydeJg+cFUJ0MlQHmwnLAJ0zW9K13Su1AZrqSwtJDKQCUZnoxUJw9wOhl6LA9uS/+sVevRb1sSxU6fq78O26dAOEBFqIIcXw7dM7pX/T9mWBnkd86nqKKIvf69bWKUgkA40GYCmjp8aHFWknVN76p9RtqhsB2mpLIEDPTr1I+87LxaPwQsseiS3oWCLgVYYlFcWZzSpt2hcKiqLk6p1qJBJMkyPBm4xNUmfqmqhhlj8Af8VIYq6ZXVi36d+zU4hIjH5cFjeejXqR8YKKksSUnzboPRHK9qdVqclWSWWHTN6Mr+sv3t+ldiWaCMsAnjdXk7bG/o8mA5ITtEt/RudEnvgstyNWn/dE86/Tr3o7iymD3+PQhCuicdEUlSig8xxiAiGkRUq9Mg0gqyvdns9e+t+kNvb/wBP2nuNLqmd+Vg+UGKK4txiYt0T3qH6NQWCAeoCFaQ7cvmiMwjWnQjFhE6pXUi05vJgfIDHCg7gM/tS3rgDdkh0txp7fL7pdo3DSKtIDp9bnmwvN2NrhoNIL1zemOJRaY3k0A4QEllCQfLD2IbG6/b2y5/AYftMGXBMrwuL0d2PjKhldJuy02PzB7k+HLY499DcUUxmd7MJuduGitoB+ma3jUpx1aqPhpEWkmXtC5ORW07UhYoqxZAorwuL90ynCKfsmAZ+/z7KKkswW2528WvYWMMZcEyBKFnVk9yfDlJS3OaO42+OX0pqSxhj38PBkOGJyPh59NOhipVUlIWISK/F5GPRWSdiLwoIp1j1t0qIptF5BMR+VbM8smRZZtFZGYq0t0Sae40vC4vITuU6qQ0SlmgDJ/bR152Xp1FVpZYZHmzyO+ST37nfLJ92fgDfkorS9vsdZYHyykNlNIlzWlV1SmtU9KDnoiQk5ZDQZcCuqR1oTRQmpROqO0xN6jav1QVaC8ChhhjhgKfArcCiMgg4GJgMDAZeEhEXCLiAv4MnAkMAi6JbNtuRKfPbQ892GMDSGOLX3xuHz0ye9C/a39ys3IJhUOUVJa0mesNhoMUVxST5k6joEsB3TO7J61oqS4uy0X3zO7kd87HY3korixOSLAN22HtZKhSJiXfOmPMf2Pevgt8J/L6POAZY0wlsEVENgOjI+s2G2O+ABCRZyLbbmylJCdEpjcT8TvT57bVCumyQBlet7dJASSWy3LRKa0TOb4cKkIVHKw4SEllCZZYKakPitZ7eFyehNd7NJfP7aNPTh/KgmUUlhZSEaxwvhvNzBEF7WC7bvmn2re28NPl+8A/I6974wSVqO2RZQDbaiw/qa4DisgMYAZAbm4uy5cvr7mezMxMXK7W/SUaVULDdSNdO3WlcHNhK6SmNkHYz/6EH7eEkpRcl+DcnIsoStgxw+Ewfr+/ajDG0tLSWt+zRh/LhKtyJM35cWHbNh6Xh02yqVnnr0tLrqkt0+tKrKQFERFZDPSMs+p2Y8zLkW1uB0LA/OhucbY3xC92q3MoVWPMI8AjACNHjjTjxo2rtn7Lli1kZ2fTrVu3Vq8Eto1NIBTAsuq/WVT4K0jLbL2KUtvYCE4/g2R9JsYYSkpK8GX4nJuvNO+m2Zjz2MbGbblxW+6EX48xhv3791NSUkJBQQEAy5cvp+b3rCkC4QB7/XspqSwh3ZPepEmlSitL6de5X8KbEbf0mtoqva7ESloQMcZMqm+9iFwOnA1MNIfG1t4O9I3ZrA+wM/K6ruVNVlFRQX5+fkpaEVliYYnVpvqMtEYAAScHKCL43D5sYxO2w4SN07NbkBafOxo8XOLC5/YlrchQROjWrRt79+5N2DG9Li+9c3ofKuKqdIq4GrqGaDDWSnWVKqlqnTUZuAU41xhTFrPqFeBiEfGJSAFwDPAesAo4RkQKRMSLU/n+SgvT0JLdW8RludrMnBStFUBqssTC4/Lgc/nwWM6vbtu2mz08jG07+3ldXrxub9LrnJL1WWV4nIEde2T2oCxQRlmwrN7tg3aQdHfr9IpXKp5U1Yk8CPiARZEv/7vGmGuMMRtE5FmcCvMQcJ0xzk9VEfkx8DrgAh4zxmxITdJbzhLL+aM3xC/AayWpCiCxRASXuKpyZyETqgokFlaDn090W7fLjUtcHeJmGh3YMcubxb6yfRRVFlU1Ea8pZIfolN4pBalUypGSnIgx5mhjTF9jzPDI45qYdbOMMf2NMccaY16LWb7QGDMgsm5WqyZ4/nzIzwfLcp7nz29ojzrt37+fE044gdEjR3NknyMpOLKAUSNGMWrEKAKBxo0A+4OrfsAnn3xS7zZ/eegvPP3U03WubwsBJJaIYFmWMzaXy4fbcmNjY9t23FybMQbbjhRdRbZvC9eRSB6Xh17Zveod2NE2docdy0y1D22hdVbbNn8+zJgBZZFiha++ct4DTJvW5MN169aNNWvWYIzhzl/cSVZ2Fj/92U+rbRO9Qdblb3//W4PnufZH19a5LpUBJHpt9TUsEBHc4q4a/Thsh53PQ5y6k2i9h8ftabNNpROpoYEdtT5EpVLH/wtsyI03wrhxdT+uuupQAIkqK3OW17XPjTc2eNpoJbOJNDLbvHkzJww7get+dB0njTqJwsJCrr3mWk4+6WSGDx3OrN8eynyNHzuetWvWEgqF6NGtB7ffejsjTxzJ2FPHsmfPHgB+eecv+dP9f6ra/vZbb+fUb5zKkEFDePftd/G6vJSVlXHhhRcybNgwLrnkEkaOHMmaNWtqpfWmm25i0KBBDB06lFtuuQWAwsJCzjvvPIYOHcqwYcP43//+B8CcOXMYMmQIQ4YM4YEHHqi6tiFDhnDNNddw2mmnsWvXLl577TVOPvlkTjzxRKZOnYrf74/7GbkslzM2l9uLS5wm2a1V79GWRAd2LOhSQE5aDiWVJZQHy3GLWzsZqpQ6fP4Km6uyjgml6lreBJZY1Roqb9q4iSuvvJL3Vr9HXl4es+6exTv/e4fVH6xmyeIlbNpYux9AUVERp409jdUfrOakb5zEvMfnxT2XMYa33nmL383+HbPvno2I8MADD9CzZ0/Wrl3LzJkz+fDDD2vtt3v3bhYuXMiGDRtYt24dt956KwDXXXcdp59+OuvWreP9999n4MCBvPfee8yfP5/33nuPd955h4ceeoh169YBsHHjRq666ipWrFiBx+Nh9uzZLFmyhA8++IChQ4dy//33N/hZeVwefG5fq/c0b0uiAzvmd8nH4/KQ5ctKdZLUYU5/wtx3X/3r8/OdIqya+vWDFnbsqcqNRMr8j+p/FCNHjaxa/89n/sncx+cSCoXYtXMXmzZtYuCggdWOkZ6ezuQzJwNw4ogTWbFiRdxznXv+uQjCSaNO4vZbbwdgxYoVVTmLYcOGMXjw4Fr7de3aFcuy+MEPfsBZZ53F2WefDTht0p955hkA3G43OTk5vPXWW1x44YVkZDi9ws8//3xWrFjBGWecQf/+/Rk1ahQlJSW8/fbbbNy4kVNOOQWAQCDAmDFjmvchHqaiAzsqlWoaRBoya1b1OhGAjAxneQJEWyUBZGYeGrri888/58EHHmTlOyvp3LkzV0y/goqK2uNQeb2HysNdLhfhUO0Z9QyGNJ/TusftdhMKOb2jG9PM2OPxsHr1ahYtWsQzzzzDX/7yF/77X2fUmpr1KfUdL/bajDFMnjyZf/zjHw2eX9WtozUkUO2TFmc1ZNo0eOQRJ+ch4jw/8kizKtXjEae2uJbi4mKys7PJyclh165dLPrvomYdP9oE1uPy1LrpjBkzhmeffRaAjz76iI0baw9FVlJSQnFxMWeffTZ//OMfq4q8xo8fz1//+lfAGQKkuLiYsWPH8uKLL1JeXk5paSkvv/wyp512Wq1jnnLKKbzxxht88cUXAPj9fj777LNmXZ9SKrU0J9IY06YlLGjUJCK4LXetX/HDhw9n4MCBnDDsBAoKCjj5lJObfIjnhLUAABJeSURBVGxjDIIc6pdSw/XXX8/06dMZOnQoJ554IkOGDKFTp+p9DoqKipgyZQqVlZXYts0f/vAHAB588EF+8IMf8PDDD+N2u3n44YcZPXo0l1xyCaNGjQLg2muv5fjjj2fz5s3Vjpmbm8vf//53pk6dWtWs+e677+aYY45p8jUqpVJL2krP6WQZOXKkWb16dbVlmzZtYuDAgXXs0frijafV0rGzov+vHlfdzWBDoRChUIi0tDQ+++wzzjjjDD777DPc7uT9tigpKSE7Oztpx29Nsd+jjjgeU0e8JtDragwRed8YM7LhLTUn0iZYYmFZiRtPqzEBBJxRPydOnEgoFMIYU5WrUEqpxtI7RhvhFjcBO5CQQQih4QAC0LlzZ95///0WnU8pdXjTivU2omZz3+ZoSgBRSqlE0DtNG1FVwV73NCn10gCilEoFvdu0Ic29+RtjMBgNIEqpVqd3nDYkOix6U+bUiAYQr+vwGktKKdU26F2nEeZ/NJ/8+/Kxfm2Rf18+8z9q/lDwUYWFhVx88cX079+fQYMG8e1vf5tPP/3UGReqkSVarRVA8vPz2bdvH0DVUCU1XXHFFTz//PP1Hmfu3Lns2rWr6v3VV18dt4OjUqr90NZZDZj/0Xxm/GtG1QxzXxV9xYx/OUPBTzu+eR0QjTFccMEFXH755VXjT61Zs4bdu3czYMAAZygUDOFwGJcr/mCDqcqBvP32283ed+7cuRQUFDBgwAAAHn300UQlK6FCoZA2dVaqkQ77v5Qb/3MjawprD38e9e72d6kMVx+xtyxYxlUvX8Xf3o8/r8fwnsO5b3LdAzsuW7YMj8fDNddcc2if4cMBp8PQr379K47ofgTrN6xn7Udrue+P9zFvrjM675Xfv5Lrf3I9pf5SLvveZezYvoNwOMydd97J1KlTmTlzJq+88gput5szzjiDe++9t9q5//KXv7BlyxbmzJkDODf2999/nwceeIDzzz+fbdu2UVFRwQ033MCM6LwpMbKysigtLcUYw/XXX8/SpUspKCio1qrsN7/5Df/6178oLy/nlFNO4eGHH+aFF15g9erVXH311WRmZvLOO+9w5plncu+99zJy5Eiefvpp7r77bowxnHXWWdxzzz1V57vhhhv497//TXp6Oi+//DK5ubnV0vTGG29www03AE6R4Jtvvkl2djZz5szhH//4B5ZlceaZZzJ79mzWrFnDNddcQ1lZGf379+exxx6jS5cujBs3jlNOOYWVK1dy7rnnMn36dK655hq2bt0KwH333cepp55a5/+pUocrLc5qQM0A0tDyxli/fj0jRoyoc/2q91Zxx513sHbdWj54/wOemPcEK95ewVsr3+Kxvz/Ghx9+yNJFS+md15u1a9eyfv16Jk+ezIEDB3jxxRerhm2/4447ah37O9/5DgsWLKh6///bO9fgKK7sAH+HQSCEMS9jF15tIdgFx7BiJVvGKgMC4ywBxUS8HJsSgRBDNmuTAj9AEFdRhvgBjnfRak2ZAIZl2YRHwMgUVcSxFiGwLUDAjhDGIoZ4t8xjbR6FQAYRLE5+9J1hECMhJsBoRuermprbt0/3nNOnp0/fe7vPXbt2LU8//TQAy5cvZ+/evezZs4eCggJOnz5dr44bN27k0KFDVFRUsHTp0mtaKFOnTqWsrIwDBw5w8eJFNm/ezNixY8nIyGDZsmX4/X7atGkTlD9+/Dh5eXls3boVv99PWVkZhYWFgJdXKzMzk/LycrKysli69PrA/fbbb7No0SL8fj87duygTZs2bNmyhcLCQnbt2kV5eTkzZ84EYMKECSxYsID9+/eTmprK3Llzg/s5e/YsJSUlvPTSS0ybNo0XXniBsrIyNmzYwOTJk+s9FobRnGn2LZGGWgwAKfkp/LHq+lTw3dp3Y9vfbrstOvXr14/uKd25olf45JNPyMnJoW3btqgqOSNz2PXpLoYPH87MGTPJy8vjySefZODAgcEUJpMnT74mbXsoXbp0oUePHuzcuZOePXty6NCh4B12QUEBGzduBOCrr77iiy++oHPnzmF13L59O+PGjcPn83H//fczZMiQ4Lri4mLeeustLly4wJkzZ+jTpw8jRoyo196ysjIGDx5Mly5dAMjNzWX79u2MHDmSVq1aBe14+OGH+eij6xNR9u/fnxdffJHc3FxGjx5NcnIyRUVFTJo0KZiWvlOnTlRVVXH27FkGDRoEwMSJE3nqqaeC+wkEU4CioqJrxmvOnTsXVylbDONWYS2RG/D6E6+TlJB0TV1SQhKvPxF5Kvg+ffo0+KZ427Ztg2+uB7qJAmMgPvEhIvTq1Yu9e/eSmprK7NmzmTdvHi1btmT37t2MGTOGwsJChg0bRm1tLWlpaaSlpTFnzhzAu1iuW7eODRs2MGrUKESEbdu2UVRURGlpKeXl5aSnp4dNPR9KuLfra2pqeO6551i/fj0VFRVMmTLlhvtp6AXLhISr2Yd9Pl8wjX0os2bNYtmyZVy8eJHMzEwqKysjSiETmq7+ypUrlJaW4vf78fv9HDt2zAKIYYTBgsgNyE3NZcmIJXRr3w1B6Na+G0tGLIl4UB1gyJAhXLp06ZqumbKyMkpKSq6R87Xw0X9AfzZ9sIlvL3zL5ZrLFBYWMnDgQI4fP05SUhLjx4/n5ZdfZt++fVRXV1NVVUV2djb5+fn4/X58Pl/wQjhv3jwARo8eTWFhIatXrw7efVdVVdGxY0eSkpKorKxk586dDdqQlZXFmjVrqK2t5cSJExQXFwMEA8Y999xDdXX1NU9stWvXjurq6uv29eijj1JSUsKpU6eora1l9erVwdZCYzhy5Aipqank5eWRkZFBZWUlQ4cOZfny5Vxw88CcOXOG9u3b07FjR3bs2AHAqlWr6v2doUOH8s477wSXw00bbBiGdWc1itzU3P9X0KiLiLBx40amT5/O/PnzSUxMJCUlhfz8fI4dOxaU87XwkZaexvgJ48l6LAvwHotNT0/nww8/ZMaMGbRo0YKEhATeffddzp8/T05ODjU1NagqCxcuDPv7HTt2pHfv3hw8eJB+/foBMGzYMBYvXkzfvn154IEHyMzMbNCGUaNGsXXrVlJTU+nVq1fwYtyhQwemTJlCamoqKSkpwbTw4D0GPH36dF555RVKS0uD9V27duXNN9/k8ccfR1XJzs4mJyen0cczPz+f4uJifD4fvXv3Zvjw4bRu3Rq/309GRgatWrUiOzubN954g5UrVwYH1nv06MGKFSvC7rOgoIDnn3+evn378t1335GVlRWcP8UwjKtYKvgmSqD//XLtZXwtfHHzImE8jStYKvjYxOy6MZYKPo5I8CVEWwXDMIx6iY/bW8MwDCMqNNsgEu/deMbtxc4fw/BolkEkMTGR06dP24XAiAhV5fTp0yQmRj59sWHEC81yTCQ5OZmjR49y8uTJaKtSLzU1NXF5kYoXuxITE0lOTo62GoYRdZplEElISKB79+7RVqNBtm3bRnp6erTVuOXEq12G0Vxplt1ZhmEYxq3BgohhGIYRMRZEDMMwjIiJ+zfWReQkcH0a3qbPPcCpaCtxGzC7Yod4tAnMrsbQTVW7NEYw7oNIrCIiexqbdiCWMLtih3i0CcyuW411ZxmGYRgRY0HEMAzDiBgLIk2XJdFW4DZhdsUO8WgTmF23FBsTMQzDMCLGWiKGYRhGxFgQMQzDMCLGgkiUEJHlIvKNiBwIqXtVRI6JiN99skPWzRaRwyJySET+IjpaN4yIfF9EikXkcxH5TESmufpOIvKRiHzhvju6ehGRAmfXfhF5KLoWhKcBu2LdX4kisltEyp1dc119dxHZ5fy1VkRaufrWbvmwW58STf3D0YBNvxaRL0N8lebqY+IcDCAiPhH5vYhsdsvR95Wq2icKHyALeAg4EFL3KvByGNneQDnQGugOHAF80bYhjJ5dgYdcuR3w3073t4BZrn4WsMCVs4EtgACZwK5o23CTdsW6vwS4y5UTgF3OD+uAZ1z9YuBnrvwcsNiVnwHWRtuGm7Dp18DYMPIxcQ6G6Psi8O/AZrccdV9ZSyRKqOp24EwjxXOANap6SVW/BA4D/W6bchGiqidUdZ8rnwc+B76Hp/9KJ7YSGOnKOcBv1GMn0EFEut5htW9IA3bVR6z4S1W12i0muI8CQ4D1rr6uvwJ+XA88ISJyh9RtFA3YVB8xcQ4CiEgy8JfAMrcsNAFfWRBpekx1zerlgW4fvAvWVyEyR2n4IhZ1XPM5He9O8D5VPQHeBRm414nFul0Q4/5y3SN+4BvgI7xW01lV/c6JhOoetMutrwI631mNb0xdm1Q14KvXna8WikhrVxczvgLygZnAFbfcmSbgKwsiTYt3gR8AacAJ4OeuPtwdRJN9NltE7gI2ANNV9VxDomHqYsmumPeXqtaqahqQjNdaejCcmPuOCbvq2iQiPwJmA38GPAJ0AvKceEzYJCJPAt+o6t7Q6jCid9xXFkSaEKr6tfsDXAGWcrUL5Cjw/RDRZOD4ndavMYhIAt6F9t9U9X1X/XWgi8B9f+PqY9quePBXAFU9C2zDGxfoICKBCetCdQ/a5da3p/FdsnecEJuGuS5JVdVLwApiz1f9gb8SkT8Aa/C6sfJpAr6yINKEqNMXOwoIPLm1CXjGPXHRHegJ7L7T+t0I1+f6HvC5qv4iZNUmYKIrTwQ+CKmf4J6QyQSqAt1eTYn67IoDf3URkQ6u3Ab4c7zxnmJgrBOr66+AH8cCW9WN3DYV6rGpMuQmRvDGDUJ91eTPQVWdrarJqpqCN1C+VVVzaQq+isYTBvZRgNV4XSCX8e4angVWARXAfncSdA2RfwWvv/oQMDza+tdj0wC8JvN+wO8+2Xh9sb8DvnDfnZy8AIucXRVARrRtuEm7Yt1ffYHfO/0PAHNcfQ+8oHcY+A+gtatPdMuH3foe0bbhJmza6nx1APgtV5/giolzsI6Ng7n6dFbUfWVpTwzDMIyIse4swzAMI2IsiBiGYRgRY0HEMAzDiBgLIoZhGEbEWBAxDMMwIsaCiBHziEjnkOysf6qTWbdVI/exQkQeuIHM8yKSe2u0bhqIyMeBjLaGEQn2iK8RV4jIq0C1qr5dp17wzvcrYTdspojIx8BUVfVHWxcjNrGWiBG3iMgPReSAiCwG9gFdRWSJiOxxc03MCZH9WETSRKSliJwVkfluTopSEbnXybwmItND5OeLN3fFIRF5zNW3FZENbtvV7reuu9MXkUdEpERE9orIFhG5T0QS3PIAJ/MvcnU+jLkiUhawJ5CR1enxCxHZISIHRSRDRDaKN7/EqyHH4TMRWSUiFSKyzr3NXVen4c7efeLNRdE2RI+D4iUvXHBLnWTEPBZEjHinN/Ceqqar6jG8eU0ygB8DPxGR3mG2aQ+UqOqPgVLg7+rZt6hqP2AGEAhI/wj8yW07Hy/j77UbeRlkfwmMUdWH8d6g/mdVvQxMApaIyFC8/Eivuc1+qaqPAKlOv2Ehu7yoqgPxUrMUAv/g5P4+kALEHYdFqpoK1AA/raPTvXhzvTyhqg/hvfE9TUTuw3s7v4+q9gXerOdYGM0UCyJGvHNEVctClseJyD68lsmDeBfXulxU1S2uvBdIqWff74eRGYCXIA9VLQc+C7Pdg0AfoEi8lOWzcMnyVHW/2/4DYJILLODNB7Ebb7KrQW77AJvcdwVQoV5iyBrgD3hJ+QC+VG++DPCC1oA6Oj2Gdyw+dTrlOpvO4KUeXyoio4Bv6zkWRjOl5Y1FDCOmCV70RKQnMA3op6pnReS3eDmG6vK/IeVa6v+fXAoj05iJfwTY71oP4fgR3vwPgW60JOAdvNkVj4nIa3X0DuhxJaQcWA7oVXfws+6yAP+pqn9znbIiGcBP8BL//QwYWr9pRnPDWiJGc+Ju4DxwzmV1vR1zn38M/DWAiKQSvqVzEPieiPRzcq1EpI8rPw3chZdkb5GI3A20wQsIp0SkHTAmAr26i8gjrjzO6RnKp8AgEenh9GgrIj3d792tqpuBFwjTPWc0b6wlYjQn9uFdwA8A/wN8cht+41fAb0Rkv/u9A3itiiCqeklExgIF7iLdEvi5iJzEGwMZ7Foc/wosVNVnRWSl29cfuTqr4s3wGTBFRN4DKoEldXT6WkSeBdaGPBb9T8BF4H03jtMCb45vwwhij/gaxi1EvAmAWqpqjes++y+gp16dwjQaOv0QWK/ebH+GcUuxlohh3FruAn7ngokAP41mADGM2421RAzDMIyIsYF1wzAMI2IsiBiGYRgRY0HEMAzDiBgLIoZhGEbEWBAxDMMwIub/ANcbcoYBiKYEAAAAAElFTkSuQmCC\n",
"text/plain": [
"